IDEAS home Printed from https://ideas.repec.org/p/osf/inarxi/5kdvu.html
   My bibliography  Save this paper

Analisis Pemetaan Risiko Bencana Banjir di Indonesia Tahun 2011 – 2015 Menggunakan Fuzzy C-Means

Author

Listed:
  • Pertiwi, Amanda Putri
  • Kurniawan, Robert

Abstract

Penelitian ini bertujuan untuk mengetahui tingkat risiko bencana banjir di masing-masing wilayah provinsi di Indonesia tahun 2011-2015 berdasarkan beberapa variabel penentu, yaitu frekuensi bencana, jumlah korban jiwa, serta jumlah rumah dan luas lahan yang rusak akibat banjir. Data diolah menggunakan analisis fuzzy c-means clustering (FCM) yang merupakan pengembangan dari fuzzy clustering dengan c partisi untuk menganalisis bencana banjir di 33 provinsi di Indonesia pada tahun 2011 sampai 2015. Frekuensi banjir, jumlah korban jiwa, luas lahan rusak dan jumlah rumah yang rusak akibat banjir digunakan sebagai variabel dalam mengelompokkan wilayah berdasarkan tingkat risikonya terhadap banjir. Dilakukan perbandingan index validitas antarhasil pengelompokkan dengan berbagai nilai fuzzifier (m=1,5; 2,0; 2,5; dan 3,0) dan jumlah kelompok (c= 2, 3, dan 4). Hasil pengelompokkan terbaik didapatkan dengan menetapkan nilai m=1,5 dan c=2 (High Risk dan Low Risk). Provinsi yang masuk ke dalam kelompok High Risk adalah Jawa Barat, Jawa Tengah, dan Jawa Timur. Sedangkan 30 provinsi lainnya masuk ke dalam kelompok Low Risk.

Suggested Citation

  • Pertiwi, Amanda Putri & Kurniawan, Robert, 2017. "Analisis Pemetaan Risiko Bencana Banjir di Indonesia Tahun 2011 – 2015 Menggunakan Fuzzy C-Means," INA-Rxiv 5kdvu, Center for Open Science.
  • Handle: RePEc:osf:inarxi:5kdvu
    DOI: 10.31219/osf.io/5kdvu
    as

    Download full text from publisher

    File URL: https://osf.io/download/5a1b5d306c613b026f5e9f1a/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/5kdvu?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:inarxi:5kdvu. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://ios.io/preprints/inarxiv/discover .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.