IDEAS home Printed from https://ideas.repec.org/p/osf/eartha/fm24b.html
   My bibliography  Save this paper

GANSim: Conditional Facies Simulation Using an Improved Progressive Growing of Generative Adversarial Networks (GANs)

Author

Listed:
  • Song, Suihong
  • Mukerji, Tapan
  • Hou, Jiagen

Abstract

Conditional facies modeling combines geological spatial patterns with different types of observed data, to build earth models for predictions of subsurface resources. Recently, researchers have used generative adversarial networks (GANs) for conditional facies modeling, where an unconditional GAN is first trained to learn the geological patterns using the original GANs loss function, then appropriate latent vectors are searched to generate facies models that are consistent with the observed conditioning data. A problem with this approach is that the time-consuming search process needs to be conducted for every new conditioning data. As an alternative, we improve GANs for conditional facies modeling by introducing an extra condition-based loss function and adjusting the architecture of the generator to take the conditioning data as inputs, based on progressive growing of GANs. The condition-based loss function is defined as the inconsistency between the input conditioning value and the corresponding characteristics exhibited by the output facies model, and forces the generator to learn the ability of being consistent with the input conditioning data, together with the learning of geological patterns. Our input conditioning factors include global features (e.g. the mud facies proportion) alone, local features such as sparse well facies data alone, and joint combination of global features and well facies data. After training, we evaluate both the quality of generated facies models and the conditioning ability of the generators, by manual inspection and quantitative assessment. The trained generators are quite robust in generating high-quality facies models conditioned to various types of input conditioning information.

Suggested Citation

  • Song, Suihong & Mukerji, Tapan & Hou, Jiagen, 2020. "GANSim: Conditional Facies Simulation Using an Improved Progressive Growing of Generative Adversarial Networks (GANs)," Earth Arxiv fm24b, Center for Open Science.
  • Handle: RePEc:osf:eartha:fm24b
    DOI: 10.31219/osf.io/fm24b
    as

    Download full text from publisher

    File URL: https://osf.io/download/5efa83468955ea0048eae154/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/fm24b?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:eartha:fm24b. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://eartharxiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.