IDEAS home Printed from https://ideas.repec.org/p/osf/africa/en5ph.html
   My bibliography  Save this paper

Modelling Geometric Measure of Variation About the Population Mean

Author

Listed:
  • Troon, Benedict

Abstract

Measures of dispersion are important statistical tool used to illustrate the distribution of datasets. These measures have allowed researchers to define the distribution of various datasets especially the measures of dispersion from the mean. Researchers and mathematicians have been able to develop measures of dispersion from the mean such as mean deviation, variance and standard deviation. However, these measures have been determined not to be perfect, for example, variance give average of squared deviation which differ in unit of measurement as the initial dataset, mean deviation gives bigger average deviation than the actual average deviation because it violates the algebraic laws governing absolute numbers, while standard deviation is affected by outliers and skewed datasets. As a result, there was a need to develop a more efficient measure of variation from the mean that would overcome these weaknesses. The aim of this paper was to model a geometric measure of variation about the population mean which could overcome the weaknesses of the existing measures of variation about the population mean. The study was able to formulate the geometric measure of variation about the population mean that obeyed the algebraic laws behind absolute numbers, which was capable of further algebraic manipulations as it could be used further to estimate the average variation about the mean for weighted datasets, probability mass functions and probability density functions. Lastly, the measure was not affected by outliers and skewed datasets. This shows that the formulated measure was capable of solving the weaknesses of the existing measures of variation about the mean

Suggested Citation

  • Troon, Benedict, 2019. "Modelling Geometric Measure of Variation About the Population Mean," AfricArxiv en5ph, Center for Open Science.
  • Handle: RePEc:osf:africa:en5ph
    DOI: 10.31219/osf.io/en5ph
    as

    Download full text from publisher

    File URL: https://osf.io/download/605b6ae657174600e1e67bbd/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/en5ph?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Troon, Benedict, 2021. "Determining The Unbiased Estimator Of The Population Geometric Measures Of Variation About The Mean," AfricArxiv brvgy, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:africa:en5ph. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/africarxiv/discover .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.