IDEAS home Printed from https://ideas.repec.org/p/oec/stdaaa/2023-05-en.html
   My bibliography  Save this paper

What is the role of data in jobs in the United Kingdom, Canada, and the United States?: A natural language processing approach

Author

Listed:
  • Julia Schmidt
  • Graham Pilgrim
  • Annabelle Mourougane

Abstract

This paper estimates the data intensity of occupations/sectors (i.e. the share of job postings per occupation/sector related to the production of data) using natural language processing (NLP) on job advertisements in the United Kingdom, Canada and the United States. Online job advertisement data collected by Lightcast provide timely and disaggregated insights into labour demand and skill requirements of different professions. The paper makes three major contributions. First, indicators created from the Lightcast data add to the understanding of digital skills in the labour market. Second, the results may advance the measurement of data assets in national account statistics. Third, the NLP methodology can handle up to 66 languages and can be adapted to measure concepts beyond digital skills. Results provide a ranking of data intensity across occupations, with data analytics activities contributing most to aggregate data intensity shares in all three countries. At the sectoral level, the emerging picture is more heterogeneous across countries. Differences in labour demand primarily explain those variations, with low data-intensive professions contributing most to aggregate data intensity in the United Kingdom. Estimates of investment in data, using a sum of costs approach and sectoral intensity shares, point to lower levels in the United Kingdom and Canada than in the United States.

Suggested Citation

  • Julia Schmidt & Graham Pilgrim & Annabelle Mourougane, 2023. "What is the role of data in jobs in the United Kingdom, Canada, and the United States?: A natural language processing approach," OECD Statistics Working Papers 2023/05, OECD Publishing.
  • Handle: RePEc:oec:stdaaa:2023/05-en
    DOI: 10.1787/fa65d29e-en
    as

    Download full text from publisher

    File URL: https://doi.org/10.1787/fa65d29e-en
    Download Restriction: no

    File URL: https://libkey.io/10.1787/fa65d29e-en?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Data asset; data economy; Data intensity; job advertisements; natural language processing;
    All these keywords.

    JEL classification:

    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
    • E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oec:stdaaa:2023/05-en. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/stoecfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.