IDEAS home Printed from https://ideas.repec.org/p/oec/stdaaa/2011-4-en.html
   My bibliography  Save this paper

Cycle Extraction: A Comparison of the Phase-Average Trend Method, the Hodrick-Prescott and Christiano-Fitzgerald Filters

Author

Listed:
  • Ronny Nilsson

    (OECD)

  • Gyorgy Gyomai

    (OECD)

Abstract

This paper reports on revision properties of different de-trending and smoothing methods (cycle estimation methods), including PAT with MCD smoothing, a double Hodrick-Prescott (HP) filter and the Christiano-Fitzgerald (CF) filter. The different cycle estimation methods are rated on their revision performance in a simulated real time experiment. Our goal is to find a robust method that gives early turning point signals and steady turning point signals. The revision performance of the methods has been evaluated according to bias, overall revision size and signal stability measures. In a second phase, we investigate if revision performance is improved using stabilizing forecasts or by changing the cycle estimation window from the baseline 6 and 96 months (i.e. filtering out high frequency noise with a cycle length shorter than 6 months and removing trend components with cycle length longer than 96 months) to 12 and 120 months. The results show that, for all tested time series, the PAT de-trending method is outperformed by both the HP or CF filter. In addition, the results indicate that the HP filter outperforms the CF filter in turning point signal stability but has a weaker performance in absolute numerical precision. Short horizon stabilizing forecasts tend to improve revision characteristics of both methods and the changed filter window also delivers more robust turning point estimates. Ce document présente l’impact des révisions dû à différentes méthodes de lissage et de correction de la tendance (méthodes d'estimation du cycle), comme la méthode PAT avec lissage en utilisant le mois de dominance cyclique (MCD), le double filtre de Hodrick-Prescott (HP) et le filtre Christiano-Fitzgerald (CF). Les différentes méthodes d'estimation du cycle sont évaluées sur leur performance de révision faite à partir d’une simulation en temps réel. Notre objectif est de trouver une méthode robuste qui donne des signaux de point de retournement tôt et stable á la fois. La performance de révisions de ces méthodes a été évaluée en fonction du biais, de la grandeur de la révision et de la stabilité du signal. Nous examinerons ensuite si la performance de la révision peut être améliorée en utilisant des prévisions de stabilisation ou en changeant la fenêtre d'estimation du cycle de base de 6 et 96 mois à une fenêtre de 12 et 120 mois. La fenêtre d’estimation de base correspond à un filtre pour éliminer le bruit (hautes fréquences) avec une longueur de cycle de moins de 6 mois et supprimer la tendance avec une longueur de cycle supérieure à 96 mois. Les résultats montrent que, pour toutes les séries testées, la méthode PAT est moins performante que les deux filtres HP ou CF. En outre, les résultats indiquent que le filtre HP surpasse le filtre CF du point de vue de la stabilité du signal du point de retournement mais sa performance est plus faible quant à la précision numérique absolue. Des prévisions à court terme ont la tendance à améliorer les caractéristiques des révisions des deux méthodes et la modification de la fenêtre de base offre aussi des estimations plus robustes des points de retournement.

Suggested Citation

  • Ronny Nilsson & Gyorgy Gyomai, 2011. "Cycle Extraction: A Comparison of the Phase-Average Trend Method, the Hodrick-Prescott and Christiano-Fitzgerald Filters," OECD Statistics Working Papers 2011/4, OECD Publishing.
  • Handle: RePEc:oec:stdaaa:2011/4-en
    DOI: 10.1787/5kg9srt7f8g0-en
    as

    Download full text from publisher

    File URL: https://doi.org/10.1787/5kg9srt7f8g0-en
    Download Restriction: no

    File URL: https://libkey.io/10.1787/5kg9srt7f8g0-en?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcelle Chauvet & Insu Kim, 2021. "Incomplete Price Adjustment and Inflation Persistence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(6), pages 1337-1371, September.
    2. G. Gopalakrishna, 2017. "Robust test of Long Run Risk and Valuation risk model," Working Papers wp1107, Dipartimento Scienze Economiche, Universita' di Bologna.
    3. Gerson Javier Pérez-Valbuena & Diana Ricciulli-Marín & Jaime Bonet-Morón & Paula Barrios, 2021. "Reglas fiscales subnacionales en Colombia: desde su concepción hasta los resultados frente al COVID-19," Documentos de Trabajo Sobre Economía Regional y Urbana 19126, Banco de la República, Economía Regional.
    4. Andrea Tkáčová & Veronika Kišová, 2017. "Zmeny zloženia kompozitného predstihového indikátora Slovenska v čase [Changes of Composite Leading Indicator Composition over Time]," Politická ekonomie, Prague University of Economics and Business, vol. 2017(5), pages 583-600.
    5. Saša Obradović & Vladimir Mihajlović, 2013. "Synchronization of Business Cycles in the Selected European Countries," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 60(6), pages 759-773, December.
    6. Guglielmo Forges Davanzati & Rosario Patalano & Guido Traficante, 2019. "The Italian economic stagnation in a Kaldorian theoretical perspective," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 841-861, October.
    7. Cavallaro, Eleonora & Villani, Ilaria, 2022. "Beyond financial deepening: Rethinking the finance-growth relationship in an uneven world," Economic Modelling, Elsevier, vol. 116(C).
    8. Agnieszka Gehringer & Jörg König, 2021. "Recent Patterns of Economic Alignment in the European (Monetary) Union," JRFM, MDPI, vol. 14(8), pages 1-23, August.
    9. Albers, Thilo Nils Hendrik, 2018. "The prelude and global impact of the Great Depression: Evidence from a new macroeconomic dataset," Explorations in Economic History, Elsevier, vol. 70(C), pages 150-163.
    10. Mustapha Olalekan Ojo & Luís Aguiar‐Conraria & Maria Joana Soares, 2024. "The performance of OECD's composite leading indicator," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2265-2277, April.
    11. Zafar Hayat & Muhammad Nadim Hanif, 2020. "Assessing the Role of Money versus Interest Rate in Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 59(1), pages 101-114.
    12. Antonio José Orozco-Gallo & Pavel Vidal-Alejandro & Johana Sanabria-Domínguez & Jaime Andrés Collazos-Rodríguez, 2021. "Indicador coincidente de actividad económica en la recesión pandémica: el caso del Caribe colombiano," Documentos de Trabajo Sobre Economía Regional y Urbana 19285, Banco de la República, Economía Regional.
    13. Anastasiou, Dimitrios, 2017. "Is ex-post credit risk affected by the cycles? The case of Italian banks," Research in International Business and Finance, Elsevier, vol. 42(C), pages 242-248.
    14. Anastasiou, Dimitrios, 2017. "The Interplay between Ex-post Credit Risk and the Cycles: Evidence from the Italian banks," MPRA Paper 79470, University Library of Munich, Germany.
    15. Kollar, Miroslav & Schmieder, Christian, 2019. "Macro-based asset allocation: An empirical analysis," EIB Working Papers 2019/11, European Investment Bank (EIB).
    16. Eraslan, Sercan & Nöller, Marvin, 2020. "Recession probabilities falling from the STARs," Discussion Papers 08/2020, Deutsche Bundesbank.
    17. repec:agr:journl:v:10(587):y:2013:i:10(587):p:97-110 is not listed on IDEAS
    18. Brunhart, Andreas & Kellermann, Kersten & Schlag, Carsten-Henning, 2012. "Drei Phasen des Potentialwachstums in Liechtenstein," KOFL Working Papers 11, Konjunkturforschungsstelle Liechtenstein (KOFL), Vaduz.
    19. Li, Xiao-Lin & Yan, Jing & Wei, Xiaohui, 2021. "Dynamic connectedness among monetary policy cycle, financial cycle and business cycle in China," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 640-652.
    20. Inna S. Lola, 2017. "The Statistical Measurement of Business Conditions for Small Entrepreneurs," HSE Working papers WP BRP 71/STI/2017, National Research University Higher School of Economics.
    21. Dilip Nachane & Aditi Chaubal, 2022. "A Comparative Evaluation of Some DSP Filters vis-à-vis Commonly Used Economic Filters," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 161-190, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oec:stdaaa:2011/4-en. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/stoecfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.