IDEAS home Printed from https://ideas.repec.org/p/nwu/cmsems/972.html
   My bibliography  Save this paper

Bounded Perception and Learning how to Decide

Author

Listed:
  • Karl Schlag

Abstract

Consider a decision maker who must coordinate his decision with the occurrence of some phenomenon. In order to behave "optimally," the circumstances surrounding the occurrence of the phenomenon must be learned. However, there are natural bounds on the capabilities of perception. More specifically, only a fixed number of attributes may be focused on and observed in each instance. This paper models this problem in the framework of learning concepts from positive examples involving bounded perception. For clarity and simplicity, it is assumed that for each positive example the decision maker may only observe on of its attributes. The analysis concentrates on finding optimal ways of specifying what attributes should be observed. With certain assumptions of independence we show that a class of local "hillclimbing" algorithms are essentially the only optimal ones. Additionally it is shown that patterns in the observation behavior emergence asymptotically. The results underscore the importance of diversifying attention when acquiring knowledge.

Suggested Citation

  • Karl Schlag, 1991. "Bounded Perception and Learning how to Decide," Discussion Papers 972, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  • Handle: RePEc:nwu:cmsems:972
    as

    Download full text from publisher

    File URL: http://www.kellogg.northwestern.edu/research/math/papers/972.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nwu:cmsems:972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fran Walker (email available below). General contact details of provider: https://edirc.repec.org/data/cmnwuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.