IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/9438.html
   My bibliography  Save this paper

Is Japan's Innovative Capacity in Decline?

Author

Listed:
  • Lee Branstetter
  • Yoshiaki Nakamura

Abstract

This paper investigates changes in the output and productivity of research and development activities in Japanese manufacturing firms over the 1980s and 1990s. Evidence from aggregate patent and R&D statistics and a micro-level analysis of R&D productivity at the firm-level suggest that there has been a slowdown in the growth of Japanese research productivity in the 1990s. The paper goes on to suggest possible explanations for this slowdown and reviews some of the steps Japanese firms are taking to increase the effectiveness of their R&D. The paper presents empirical evidence concerning the impact of one of these steps the creation of technology alliances with U.S. firms on Japanese innovative output.

Suggested Citation

  • Lee Branstetter & Yoshiaki Nakamura, 2003. "Is Japan's Innovative Capacity in Decline?," NBER Working Papers 9438, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:9438
    Note: ITI
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w9438.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rebecca Henderson & Adam B. Jaffe & Manuel Trajtenberg, 1998. "Universities As A Source Of Commercial Technology: A Detailed Analysis Of University Patenting, 1965-1988," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 119-127, February.
    2. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    3. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
    4. Lee Branstetter, 2010. "Exploring the Link between Academic Science and Industrial Innovation," NBER Chapters, in: Contributions in Memory of Zvi Griliches, pages 119-142, National Bureau of Economic Research, Inc.
    5. Mansfield, Edwin, 1988. "Industrial R&D in Japan and the United States: A Comparative Study," American Economic Review, American Economic Association, vol. 78(2), pages 223-228, May.
    6. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    7. Feenstra, Robert C., 1996. "Trade and uneven growth," Journal of Development Economics, Elsevier, vol. 49(1), pages 229-256, April.
    8. Rosenberg, Nathan & Nelson, Richard R., 1994. "American universities and technical advance in industry," Research Policy, Elsevier, vol. 23(3), pages 323-348, May.
    9. repec:bla:jindec:v:46:y:1998:i:2:p:207-33 is not listed on IDEAS
    10. Belderbos, Rene, 2001. "Overseas innovations by Japanese firms: an analysis of patent and subsidiary data," Research Policy, Elsevier, vol. 30(2), pages 313-332, February.
    11. Adam S. Posen, 2001. "Unchanging Innovation and Changing Economic Performance in Japan," Working Paper Series WP01-5, Peterson Institute for International Economics.
    12. Branstetter, Lee, 2006. "Is foreign direct investment a channel of knowledge spillovers? Evidence from Japan's FDI in the United States," Journal of International Economics, Elsevier, vol. 68(2), pages 325-344, March.
    13. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    14. Lee Branstetter & Mariko Sakakibara, 1998. "Japanese Research Consortia: A Microeconometric Analysis of Industrial Policy," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 207-233, June.
    15. Branstetter, Lee G., 2001. "Are knowledge spillovers international or intranational in scope?: Microeconometric evidence from the U.S. and Japan," Journal of International Economics, Elsevier, vol. 53(1), pages 53-79, February.
    16. Sakakibara, Mariko & Branstetter, Lee, 2001. "Do Stronger Patents Induce More Innovation? Evidence from the 1988 Japanese Patent Law Reforms," RAND Journal of Economics, The RAND Corporation, vol. 32(1), pages 77-100, Spring.
    17. Adam B. Jaffe & Manuel Trajtenberg, 1996. "Flows of Knowledge from Universities and Federal Labs: Modeling the Flowof Patent Citations Over Time and Across Institutional and Geographic Boundari," NBER Working Papers 5712, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Motohashi, Kazuyuki, 2005. "University-industry collaborations in Japan: The role of new technology-based firms in transforming the National Innovation System," Research Policy, Elsevier, vol. 34(5), pages 583-594, June.
    2. Elizabeth Webster & Paul H. Jensen, 2011. "Do Patents Matter for Commercialization?," Journal of Law and Economics, University of Chicago Press, vol. 54(2), pages 431-453.
    3. Sigurdson, Jon, 2004. "Vlsi Revisited – Revival In Japan," EIJS Working Paper Series 191, Stockholm School of Economics, The European Institute of Japanese Studies.
    4. Iwasa, Tomoko & Odagiri, Hiroyuki, 2004. "Overseas R&D, knowledge sourcing, and patenting: an empirical study of Japanese R&D investment in the US," Research Policy, Elsevier, vol. 33(5), pages 807-828, July.
    5. Ogawa, Kazuo, 2007. "Debt, R&D investment and technological progress: A panel study of Japanese manufacturing firms' behavior during the 1990s," Journal of the Japanese and International Economies, Elsevier, vol. 21(4), pages 403-423, December.
    6. Robert Dekle, 2003. "The Deteriorating Fiscal Situation and an Aging Population," NBER Chapters, in: Structural Impediments to Growth in Japan, pages 71-88, National Bureau of Economic Research, Inc.
    7. Nagaoka, Sadao, 2006. "R&D and market value of Japanese firms in the 1990s," Journal of the Japanese and International Economies, Elsevier, vol. 20(2), pages 155-176, June.
    8. Mr. Murtaza H Syed & Ms. Jinsook Lee, 2010. "Japan’s Quest for Growth: Exploring the Role of Capital and innovation," IMF Working Papers 2010/294, International Monetary Fund.
    9. Yamashita, Nobuaki, 2021. "Economic crisis and innovation capacity of Japan: Evidence from cross-country patent citations," Technovation, Elsevier, vol. 101(C).
    10. Branstetter, Lee, 2006. "Is foreign direct investment a channel of knowledge spillovers? Evidence from Japan's FDI in the United States," Journal of International Economics, Elsevier, vol. 68(2), pages 325-344, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee Branstetter & Kwon Hyeog Ug, 2004. "The Restructuring Of Japanese Research And Development: The Increasing Impact Of Science On Japanese R&D," Discussion papers 04021, Research Institute of Economy, Trade and Industry (RIETI).
    2. Branstetter, Lee, 2006. "Is foreign direct investment a channel of knowledge spillovers? Evidence from Japan's FDI in the United States," Journal of International Economics, Elsevier, vol. 68(2), pages 325-344, March.
    3. Lee Branstetter & Reiko Aoki, 2005. "Is Academic Science Raising Innovative Productivity? Theory and Evidence from Firm-Level Data," Hi-Stat Discussion Paper Series d05-86, Institute of Economic Research, Hitotsubashi University.
    4. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    5. Iwasa, Tomoko & Odagiri, Hiroyuki, 2004. "Overseas R&D, knowledge sourcing, and patenting: an empirical study of Japanese R&D investment in the US," Research Policy, Elsevier, vol. 33(5), pages 807-828, July.
    6. Peri, Giovanni, 2003. "Knowledge Flows, R&D Spillovers and Innovation," ZEW Discussion Papers 03-40, ZEW - Leibniz Centre for European Economic Research.
    7. Malwina Mejer, 2012. "The impact of knowledge diversity on inventive performance at European universities," Working Papers TIMES² 2013-004, ULB -- Universite Libre de Bruxelles.
    8. Lee G. Branstetter & Matej Drev & Namho Kwon, 2019. "Get with the Program: Software-Driven Innovation in Traditional Manufacturing," Management Science, INFORMS, vol. 65(2), pages 541-558, February.
    9. Drivas, Kyriakos & Economidou, Claire & Karamanis, Dimitrios & Sanders, Mark, 2020. "Mobility of highly skilled individuals and local innovation activity," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    10. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    11. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    12. Ashish Arora & Lee G. Branstetter & Matej Drev, 2013. "Going Soft: How the Rise of Software-Based Innovation Led to the Decline of Japan's IT Industry and the Resurgence of Silicon Valley," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 757-775, July.
    13. Powers, Joshua B. & McDougall, Patricia P., 2005. "University start-up formation and technology licensing with firms that go public: a resource-based view of academic entrepreneurship," Journal of Business Venturing, Elsevier, vol. 20(3), pages 291-311, May.
    14. Munari, Federico & Toschi, Laura, 2014. "Running ahead in the nanotechnology gold rush. Strategic patenting in emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 194-207.
    15. Lili Wang & Zexia Li, 2021. "Knowledge flows from public science to industrial technologies," The Journal of Technology Transfer, Springer, vol. 46(4), pages 1232-1255, August.
    16. Perri, Alessandra & Andersson, Ulf, 2014. "Knowledge outflows from foreign subsidiaries and the tension between knowledge creation and knowledge protection: Evidence from the semiconductor industry," International Business Review, Elsevier, vol. 23(1), pages 63-75.
    17. Paola Criscuolo, 2003. "Reverse Technology Transfer: A Patent Citation Analysis of the European Chemical and Pharmaceutical Sectors," SPRU Working Paper Series 107, SPRU - Science Policy Research Unit, University of Sussex Business School.
    18. Michael Roach & Wesley M. Cohen, 2012. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," NBER Working Papers 18292, National Bureau of Economic Research, Inc.
    19. Nadia Ayari & Szabolcs Blazsek & Pedro Mendi, 2012. "Renewable energy innovations in Europe: a dynamic panel data approach," Applied Economics, Taylor & Francis Journals, vol. 44(24), pages 3135-3147, August.
    20. John Van Reenen & Rupert Harrison & Rachel Griffith, 2006. "How Special Is the Special Relationship? Using the Impact of U.S. R&D Spillovers on U.K. Firms as a Test of Technology Sourcing," American Economic Review, American Economic Association, vol. 96(5), pages 1859-1875, December.

    More about this item

    JEL classification:

    • I24 - Health, Education, and Welfare - - Education - - - Education and Inequality
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:9438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.