IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/33319.html
   My bibliography  Save this paper

Linear Estimation of Global Average Treatment Effects

Author

Listed:
  • Stefan Faridani
  • Paul Niehaus

Abstract

We study the problem of estimating the average causal effect of treating every member of a population, as opposed to none, using an experiment that treats only some. We consider settings where spillovers have global support and decay slowly with (a generalized notion of) distance. We derive the minimax rate over both estimators and designs, and show that it increases with the spatial rate of spillover decay. Estimators based on OLS regressions like those used to analyze recent large-scale experiments are consistent (though only after de-weighting), achieve the minimax rate when the DGP is linear, and converge faster than IPW-based alternatives when treatment clusters are small, providing one justification for OLS's ubiquity. When the DGP is nonlinear they remain consistent but converge slowly. We further address inference and bandwidth selection. Applied to the cash transfer experiment studied by Egger et al (2022) these methods yield a 20% larger estimated effect on consumption.

Suggested Citation

  • Stefan Faridani & Paul Niehaus, 2024. "Linear Estimation of Global Average Treatment Effects," NBER Working Papers 33319, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:33319
    Note: DEV TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w33319.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C9 - Mathematical and Quantitative Methods - - Design of Experiments

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:33319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.