IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/32983.html
   My bibliography  Save this paper

On the Identifying Power of Generalized Monotonicity for Average Treatment Effects

Author

Listed:
  • Yuehao Bai
  • Shunzhuang Huang
  • Sarah Moon
  • Azeem Shaikh
  • Edward J. Vytlacil

Abstract

In the context of a binary outcome, treatment, and instrument, Balke and Pearl (1993, 1997) establish that the monotonicity condition of Imbens and Angrist (1994) has no identifying power beyond instrument exogeneity for average potential outcomes and average treatment effects in the sense that adding it to instrument exogeneity does not decrease the identified sets for those parameters whenever those restrictions are consistent with the distribution of the observable data. This paper shows that this phenomenon holds in a broader setting with a multi-valued outcome, treatment, and instrument, under an extension of the monotonicity condition that we refer to as generalized monotonicity. We further show that this phenomenon holds for any restriction on treatment response that is stronger than generalized monotonicity provided that these stronger restrictions do not restrict potential outcomes. Importantly, many models of potential treatments previously considered in the literature imply generalized monotonicity, including the types of monotonicity restrictions considered by Kline and Walters (2016), Kirkeboen et al. (2016), and Heckman and Pinto (2018), and the restriction that treatment selection is determined by particular classes of additive random utility models. We show through a series of examples that restrictions on potential treatments can provide identifying power beyond instrument exogeneity for average potential outcomes and average treatment effects when the restrictions imply that the generalized monotonicity condition is violated. In this way, our results shed light on the types of restrictions required for help in identifying average potential outcomes and average treatment effects.

Suggested Citation

  • Yuehao Bai & Shunzhuang Huang & Sarah Moon & Azeem Shaikh & Edward J. Vytlacil, 2024. "On the Identifying Power of Generalized Monotonicity for Average Treatment Effects," NBER Working Papers 32983, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:32983
    Note: TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w32983.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:32983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.