IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/32105.html
   My bibliography  Save this paper

How Learning About Harms Impacts the Optimal Rate of Artificial Intelligence Adoption

Author

Listed:
  • Joshua S. Gans

Abstract

This paper examines recent proposals and research suggesting that AI adoption should be delayed until its potential harms are properly understood. It is shown that conclusions regarding the social optimality of delayed AI adoption are sensitive to assumptions regarding the process by which regulators learn about the salience of particular harms. When such learning is by doing -- based on the real-world adoption of AI -- this generally favours acceleration of AI adoption to surface and react to potential harms more quickly. This case is strengthened when AI adoption is potentially reversible. The paper examines how different conclusions regarding the optimality of accelerated or delayed AI adoption influence and are influenced by other policies that may moderate AI harm.

Suggested Citation

  • Joshua S. Gans, 2024. "How Learning About Harms Impacts the Optimal Rate of Artificial Intelligence Adoption," NBER Working Papers 32105, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:32105
    Note: PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w32105.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steven Callander & Hongyi Li, 2024. "Regulating an Innovative Industry," Discussion Papers 2024-07, School of Economics, The University of New South Wales.

    More about this item

    JEL classification:

    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:32105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.