IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/31815.html
   My bibliography  Save this paper

Economic Growth under Transformative AI

Author

Listed:
  • Philip Trammell
  • Anton Korinek

Abstract

Industrialized countries have long seen relatively stable growth in output per capita and a stable labor share. AI may be transformative, in the sense that it may break one or both of these stylized facts. This review outlines the ways this may happen by placing several strands of the literature on AI and growth within a common framework. We first evaluate models in which AI increases output production, for example via increases in capital's substitutability for labor or task automation, capturing the notion that AI will let capital “self-replicate”. This typically speeds up growth and lowers the labor share. We then consider models in which AI increases knowledge production, capturing the notion that AI will let capital “self-improve”, speeding growth further. Taken as a whole, the literature suggests that sufficiently advanced AI is likely to deliver both effects.

Suggested Citation

  • Philip Trammell & Anton Korinek, 2023. "Economic Growth under Transformative AI," NBER Working Papers 31815, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:31815
    Note: EFG IFM LS PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w31815.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anton Korinek & Donghyun Suh, 2024. "Scenarios for the Transition to AGI," NBER Working Papers 32255, National Bureau of Economic Research, Inc.

    More about this item

    JEL classification:

    • E2 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
    • O4 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:31815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.