IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/31646.html
   My bibliography  Save this paper

Regulatory Arbitrage or Random Errors? Implications of Race Prediction Algorithms in Fair Lending Analysis

Author

Listed:
  • Daniel Greenwald
  • Sabrina T. Howell
  • Cangyuan Li
  • Emmanuel Yimfor

Abstract

When race is not directly observed, regulators and analysts commonly predict it using algorithms based on last name and address. In small business lending—where regulators assess fair lending law compliance using the Bayesian Improved Surname Geocoding (BISG) algorithm—we document large prediction errors among Black Americans. The errors bias measured racial disparities in loan approval rates downward by 43%, with greater bias for traditional vs. fintech lenders. Regulation using self-identified race would increase lending to Black borrowers, but also shift lending toward affluent areas because errors correlate with socioeconomics. Overall, using race proxies in policymaking and research presents challenges.

Suggested Citation

  • Daniel Greenwald & Sabrina T. Howell & Cangyuan Li & Emmanuel Yimfor, 2023. "Regulatory Arbitrage or Random Errors? Implications of Race Prediction Algorithms in Fair Lending Analysis," NBER Working Papers 31646, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:31646
    Note: CF PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w31646.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    JEL classification:

    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
    • J15 - Labor and Demographic Economics - - Demographic Economics - - - Economics of Minorities, Races, Indigenous Peoples, and Immigrants; Non-labor Discrimination

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:31646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.