IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/31620.html
   My bibliography  Save this paper

What Predicts the Growth of Small Firms? Evidence from Tanzanian Commercial Loan Data

Author

Listed:
  • Mia Ellis
  • Cynthia Kinnan
  • Margaret S. McMillan
  • Sarah Shaukat

Abstract

Not all firms have equal capacity to absorb productive credit. Identifying those with higher potential may have large consequences for productivity. We collect detailed survey data on small- and medium-sized Tanzanian firms who borrow from a large commercial bank, which in turn raises funds via international capital markets. Using machine learning methods to identify predictors of loan growth, we document, first, that we achieve high rates of predictive power. Second, “soft” information (entrepreneurs’ motivations for entrepreneurship and constraints faced) has predictive power over and above administrative data (sector, age, etc.). Third, there is a different and larger set of predictors for women than men, consistent with greater barriers to efficient capital allocation among female entrepreneurs.

Suggested Citation

  • Mia Ellis & Cynthia Kinnan & Margaret S. McMillan & Sarah Shaukat, 2023. "What Predicts the Growth of Small Firms? Evidence from Tanzanian Commercial Loan Data," NBER Working Papers 31620, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:31620
    Note: DEV
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w31620.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    More about this item

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • J16 - Labor and Demographic Economics - - Demographic Economics - - - Economics of Gender; Non-labor Discrimination
    • O16 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Financial Markets; Saving and Capital Investment; Corporate Finance and Governance

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:31620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.