IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/28449.html
   My bibliography  Save this paper

Addressing Partial Identification in Climate Modeling and Policy Analysis

Author

Listed:
  • Charles F. Manski
  • Alan H. Sanstad
  • Stephen J. DeCanio

Abstract

Numerical simulations of the global climate system provide inputs to integrated assessment modeling for estimating the impacts of greenhouse gas mitigation and other policies to address global climate change. While essential tools for this purpose, computational climate models are subject to considerable uncertainty, including inter-model “structural” uncertainty. Structural uncertainty analysis has emphasized simple or weighted averaging of the outputs of multi-model ensembles, sometimes with subjective Bayesian assignment of probabilities across models. However, choosing appropriate weights is problematic. To use climate simulations in integrated assessment, we propose instead framing climate model uncertainty as a problem of partial identification, or “deep” uncertainty. This terminology refers to situations in which the underlying mechanisms, dynamics, or laws governing a system are not completely known and cannot be credibly modeled definitively even in the absence of data limitations in a statistical sense. We propose the min-max regret (MMR) decision criterion to account for deep climate uncertainty in integrated assessment without weighting climate model forecasts. We develop a theoretical framework for cost-benefit analysis of climate policy based on MMR, and apply it computationally with a simple integrated assessment model. We suggest avenues for further research.

Suggested Citation

  • Charles F. Manski & Alan H. Sanstad & Stephen J. DeCanio, 2021. "Addressing Partial Identification in Climate Modeling and Policy Analysis," NBER Working Papers 28449, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:28449
    Note: EEE PE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w28449.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Dongrui & Chu, Junyu & Chen, Luonan & Ma, Huanfei, 2023. "Data assimilation with hybrid modeling," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. DeCanio, Stephen J. & Manski, Charles F. & Sanstad, Alan H., 2022. "Minimax-regret climate policy with deep uncertainty in climate modeling and intergenerational discounting," Ecological Economics, Elsevier, vol. 201(C).

    More about this item

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:28449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.