IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/19486.html
   My bibliography  Save this paper

Accounting for Expectational and Structural Error in Binary Choice Problems: A Moment Inequality Approach

Author

Listed:
  • Michael J. Dickstein
  • Eduardo Morales

Abstract

Many economic decisions involve a binary choice - for example, when consumers decide to purchase a good or when firms decide to enter a new market. In such settings, agents' choices often depend on imperfect expectations of the future payoffs from their decision (expectational error) as well as factors that the econometrician does not observe (structural error). In this paper, we show that expectational error, under an assumption of rational expectations, is a source of classical measurement error, and we propose a novel moment inequality estimator that accounts for both expectational error and structural error in a binary choice model. With simulated data and Chilean firm-level customs data, we illustrate the identifying power of our inequalities and show the biases that arise when one ignores either source of error. We use the customs data to estimate the fixed costs exporters face when entering a new market.

Suggested Citation

  • Michael J. Dickstein & Eduardo Morales, 2013. "Accounting for Expectational and Structural Error in Binary Choice Problems: A Moment Inequality Approach," NBER Working Papers 19486, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:19486
    Note: IO ITI TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w19486.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho, Kate & Rosen, Adam M., 2015. "Partial Identification in Applied Research: Benefits and Challenges," CEPR Discussion Papers 10883, C.E.P.R. Discussion Papers.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • F14 - International Economics - - Trade - - - Empirical Studies of Trade
    • L10 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:19486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.