IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/16457.html
   My bibliography  Save this paper

Estimation and Evaluation of Conditional Asset Pricing Models

Author

Listed:
  • Stefan Nagel
  • Kenneth J. Singleton

Abstract

We find that several recently proposed consumption-based models of stock returns, when evaluated using an optimal set of managed portfolios and the associated model-implied conditional moment restrictions, fail to capture key features of risk premiums in equity markets. To arrive at these conclusions, we construct an optimal GMM estimator for models in which the stochastic discount factor (SDF) is a conditionally affine function of a set of priced risk factors. Further, for the (often relevant) case where a researcher is proposing a generalized SDF relative to some null model, we show that there is an optimal choice of managed portfolios to use in testing the null against the proposed alternative.

Suggested Citation

  • Stefan Nagel & Kenneth J. Singleton, 2010. "Estimation and Evaluation of Conditional Asset Pricing Models," NBER Working Papers 16457, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:16457
    Note: AP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w16457.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bansal, Ravi & Kiku, Dana & Yaron, Amir, 2016. "Risks for the long run: Estimation with time aggregation," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 52-69.
    2. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    3. Dante Amengual & Marine Carrasco & Enrique Sentana, 2017. "Testing Distributional Assumptions Using a Continuum of Moments," Working Papers wp2018_1709, CEMFI.
    4. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Jens J. Krüger, 2014. "A multivariate evaluation of German output growth and inflation forecasts," Economics Bulletin, AccessEcon, vol. 34(3), pages 1410-1418.
    6. Joachim Inkmann, 2000. "Finite Sample Properties of One-Step, Two-Step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation," Econometric Society World Congress 2000 Contributed Papers 0332, Econometric Society.
    7. Otsu, Taisuke, 2010. "On Bahadur efficiency of empirical likelihood," Journal of Econometrics, Elsevier, vol. 157(2), pages 248-256, August.
    8. Lozano, Martín & Rubio, Gonzalo, 2011. "Evaluating alternative methods for testing asset pricing models with historical data," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 136-146, January.
    9. repec:hal:wpspec:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    10. repec:wsr:wpaper:y:2010:i:057 is not listed on IDEAS
    11. Frank Kleibergen, 2004. "Expansions of GMM statistics that indicate their properties under weak and/or many instruments and the bootstrap," Econometric Society 2004 North American Summer Meetings 408, Econometric Society.
    12. Masakatsu Okubo, 2011. "The Intertemporal Elasticity of Substitution: An Analysis Based on Japanese Data," Economica, London School of Economics and Political Science, vol. 78(310), pages 367-390, April.
    13. Xu Cheng & Winston Wei Dou & Zhipeng Liao, 2022. "Macro‐Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models," Econometrica, Econometric Society, vol. 90(2), pages 685-713, March.
    14. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    15. Shane M. Sherlund, 2004. "Quasi Empirical Likelihood Estimation of Moment Condition Models," Econometric Society 2004 North American Summer Meetings 507, Econometric Society.
    16. Mutschler, Willi, 2018. "Higher-order statistics for DSGE models," Econometrics and Statistics, Elsevier, vol. 6(C), pages 44-56.
    17. Sophocles Mavroeidis, 2004. "Weak Identification of Forward‐looking Models in Monetary Economics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(s1), pages 609-635, September.
    18. Attanasio, Orazio & Low, Hamish & Sánchez-Marcos, Virginia & Levell, Peter, 2015. "Aggregating Elasticities: Intensive and Extensive Margins of Female Labour Supply," CEPR Discussion Papers 10732, C.E.P.R. Discussion Papers.
    19. Szafranek, Karol, 2017. "Flattening of the New Keynesian Phillips curve: Evidence for an emerging, small open economy," Economic Modelling, Elsevier, vol. 63(C), pages 334-348.
    20. Brockhaus, Jan & Kalkuhl, Matthias & Kozicka, Marta, 2016. "What Drives India’s Rice Stocks? Empirical Evidence," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235659, Agricultural and Applied Economics Association.
    21. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2007. "Enhanced routines for instrumental variables/generalized method of moments estimation and testing," Stata Journal, StataCorp LP, vol. 7(4), pages 465-506, December.
    22. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.

    More about this item

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:16457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.