IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/0189.html
   My bibliography  Save this paper

A System of Subroutines For Iteratively Reweighted Least Squares Computations

Author

Listed:
  • David E. Coleman
  • Paul W. Holland
  • Neil Kaden
  • Virginia Klema

Abstract

A description of a system of subroutines to compute solutions to the iteratively reweighted least squares problem is presented. The weights are determined from the data and linear fit and are computed as functions of the scaled residuals. Iteratively reweighted least squares is a part of robust statistics where "robustness" means relative insensitivity to moderate departures from assumptions. The software for iteratively reweighted least squares is cast as semi-portable Fortran code whose performance is unaffected (in the sense that performance will not be degraded) by the computer or operating-system environment in which it is used. An [ell sub1] start and an [ell sub2] start are provided. Eight weight functions, a numerical rank determination, convergence criterion, and a stem-and-leaf display are included.

Suggested Citation

  • David E. Coleman & Paul W. Holland & Neil Kaden & Virginia Klema, 1977. "A System of Subroutines For Iteratively Reweighted Least Squares Computations," NBER Working Papers 0189, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:0189
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w0189.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bissantz, Nicolai & Dümbgen, Lutz & Munk, Axel & Stratmann, Bernd, 2008. "Convergence analysis of generalized iteratively reweighted least squares algorithms on convex function spaces," Technical Reports 2008,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Mastronardi, Nicola & O'Leary, Dianne P., 2007. "Fast robust regression algorithms for problems with Toeplitz structure," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 1119-1131, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:0189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.