IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/0024.html
   My bibliography  Save this paper

Optimal Adaptive Control Methods for Structurally Varying Systems

Author

Listed:
  • Alexander H. Sarris
  • Michael Athans

Abstract

The problem of simultaneously identifying and controlling a time-varying, perfectly-observed linear system is posed. The parameters are assumed to obey a Markov structure and are estimated with a Kalman filter. The problem can be solved conceptually by dynamic programming, but even with a quadratic loss function the analytical computations cannot be carried out for more than one step because of the dual nature of the optimal control law. All approximations to the solution that have been proposed in the literature, and two approximations that are presented here for the first time are analyzed. They are classified into dual and non-dual methods. Analytical comparison is untractable; hence Monte Carlo simulations are used. A set of experiments is presented in which five non-dual methods are compared. The numerical results indicate a possible ordering among these approximations.

Suggested Citation

  • Alexander H. Sarris & Michael Athans, 1973. "Optimal Adaptive Control Methods for Structurally Varying Systems," NBER Working Papers 0024, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:0024
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w0024.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Kendrick, 1976. "Applications of Control Theory to Macroeconomics," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 2, pages 171-190, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:0024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.