IDEAS home Printed from https://ideas.repec.org/p/mtl/montde/8615.html
   My bibliography  Save this paper

Estimating the Tobit Model with Serial Correlation: an Operational Approach

Author

Listed:
  • Dagenais, M.G.

Abstract

Several Authors Have Discussed Recently the Limited Dependent Variable Regression Model with Serial Correlation Between Residuals. the Pseudo-Maximum Likelihood Estimators Obtained by Ignoring Serial Correlation Altogether, Have Been Shown to Be Consistent. We Present Alternative Pseudo-Maximum Likelihood Estimators Which Are Obtained by Ignoring Serial Correlation Only Selectively. Monte Carlo Experiments on a Model with First Order Serial Correlation Suggest That Our Alternative Estimators Have Substantially Lower Mean-Squared Errors in Medium Size and Small Samples, Especially When the Serial Correlation Coefficient Is High. the Same Experiments Also Suggest That the True Level of the Confidence Intervals Established with Our Estimators by Assuming Asymptotic Normality, Is Somewhat Lower Than the Intended Level. Although the Paper Focuses on Models with Only First Order Serial Correlation, the Generalization of the Proposed Approach to Serial Correlation of Higher Order Is Also Discussed Briefly.

Suggested Citation

  • Dagenais, M.G., 1986. "Estimating the Tobit Model with Serial Correlation: an Operational Approach," Cahiers de recherche 8615, Universite de Montreal, Departement de sciences economiques.
  • Handle: RePEc:mtl:montde:8615
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/1866/411
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gouriéroux, Christian & Jouneau, F., 1994. "Multivariate distributions for limited dependent variable models," CEPREMAP Working Papers (Couverture Orange) 9414, CEPREMAP.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mtl:montde:8615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sharon BREWER (email available below). General contact details of provider: https://edirc.repec.org/data/demtlca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.