IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2023-16.html
   My bibliography  Save this paper

Familial Inference: Tests for Hypotheses on a Family of Centres

Author

Listed:
  • Ryan Thompson
  • Catherine S. Forbes
  • Steven N. MacEachern
  • Mario Peruggia

Abstract

Statistical hypotheses are translations of scientific hypotheses into statements about one or more distributions, often concerning their centre. Tests that assess statistical hypotheses of centre implicitly assume a specific centre, e.g., the mean or median. Yet, scientific hypotheses do not always specify a particular centre. This ambiguity leaves the possibility for a gap between scientific theory and statistical practice that can lead to rejection of a true null. In the face of replicability crises in many scientific disciplines, significant results of this kind are concerning. Rather than testing a single centre, this paper proposes testing a family of plausible centres, such as that induced by the Huber loss function (the Huber family). Each centre in the family generates a testing problem, and the resulting family of hypotheses constitutes a familial hypothesis. A Bayesian nonparametric procedure is devised to test familial hypotheses, enabled by a novel pathwise optimization routine to fit the Huber family. The favourable properties of the new test are demonstrated theoretically and experimentally. Two examples from psychology serve as real-world case studies.

Suggested Citation

  • Ryan Thompson & Catherine S. Forbes & Steven N. MacEachern & Mario Peruggia, 2023. "Familial Inference: Tests for Hypotheses on a Family of Centres," Monash Econometrics and Business Statistics Working Papers 16/23, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2023-16
    as

    Download full text from publisher

    File URL: https://www.monash.edu/business/ebs/research/publications/ebs/wp16-2023.pdf
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2023-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.