IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2016-15.html
   My bibliography  Save this paper

Singular Spectrum Analysis of Grenander Processes and Sequential Time Series Reconstruction

Author

Listed:
  • D.S. Poskitt

Abstract

This paper provides a detailed analysis of the properties of Singular Spectrum Analysis (SSa) under very general conditions concerning the structure of the observed series. It translates the SSA interpretation of the singular value decomposition of the so called trajectory matrix as a discrete Karhunen-Loeve expansion into conventional principle components analysis, and shows how this motivates a consideration of SSA constructed using standardized or re-scaled trajectories (R-SSA). The asymptotic properties of R-SSA are derived assuming that the true data generating process (DGP) satisfies sufficient regularity to ensure that Grenander's conditions are satisfied. The spectral structure of different population ensemble models implicit in the large sample properties so derived is examined and it is shown how the decomposition of the spectrum into discrete and continuous components leads to an application of sequential R-SSA series reconstruction. As part of the latter exercise the paper presents a generalization of Szego's theorem to fractionally integrated processes. The operation of the theoretical results is demonstrated via simulation experiments. The latter serve as a vehicle to illustrate the numerical consequences of the results in the context of different processes, and to assess the practical impact of the sequential R-SSA processing methodology.

Suggested Citation

  • D.S. Poskitt, 2016. "Singular Spectrum Analysis of Grenander Processes and Sequential Time Series Reconstruction," Monash Econometrics and Business Statistics Working Papers 15/16, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2016-15
    as

    Download full text from publisher

    File URL: http://business.monash.edu/econometrics-and-business-statistics/research/publications/ebs/wp15-16.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    2. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    3. repec:rim:rimwps:14-08 is not listed on IDEAS
    4. Dimitrios D. Thomakos, 2008. "Optimal Linear Filtering, Smoothing and Trend Extraction for Processes with Unit Roots and Cointegration," Working Paper series 14_08, Rimini Centre for Economic Analysis.
    5. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    6. Poskitt, Don S, 2000. "Strongly Consistent Determination of Cointegrating Rank via Canonical Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 77-90, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, M. Atikur Rahman & Poskitt, D.S., 2017. "Forecasting stochastic processes using singular spectrum analysis: Aspects of the theory and application," International Journal of Forecasting, Elsevier, vol. 33(1), pages 199-213.
    2. Md Atikur Rahman Khan & D.S. Poskitt, 2011. "Window Length Selection and Signal-Noise Separation and Reconstruction in Singular Spectrum Analysis," Monash Econometrics and Business Statistics Working Papers 23/11, Monash University, Department of Econometrics and Business Statistics.
    3. George Kapetanios, 2003. "A New Nonparametric Test of Cointegration Rank," Working Papers 482, Queen Mary University of London, School of Economics and Finance.
    4. Dias, Gustavo Fruet & Kapetanios, George, 2018. "Estimation and forecasting in vector autoregressive moving average models for rich datasets," Journal of Econometrics, Elsevier, vol. 202(1), pages 75-91.
    5. Bai, Jushan & Liao, Yuan, 2017. "Inferences in panel data with interactive effects using large covariance matrices," Journal of Econometrics, Elsevier, vol. 200(1), pages 59-78.
    6. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2016. "Exponent of Cross‐Sectional Dependence: Estimation and Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 929-960, September.
    7. Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2018. "Factor-Driven Two-Regime Regression," Department of Economics Working Papers 2018-14, McMaster University.
    8. Bai, Jushan & Ng, Serena, 2019. "Rank regularized estimation of approximate factor models," Journal of Econometrics, Elsevier, vol. 212(1), pages 78-96.
    9. Alexander Chudik & M. Hashem Pesaran, 2013. "Econometric Analysis of High Dimensional VARs Featuring a Dominant Unit," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 592-649, August.
    10. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    11. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    12. Xialu Liu & John Guerard & Rong Chen & Ruey Tsay, 2024. "Improving Estimation of Portfolio Risk Using New Statistical Factors," Papers 2409.17182, arXiv.org.
    13. Chudik, Alexander & Pesaran, M. Hashem, 2011. "Infinite-dimensional VARs and factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 4-22, July.
    14. Yacine Aït-Sahalia & Dacheng Xiu, 2019. "Principal Component Analysis of High-Frequency Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 287-303, January.
    15. Barigozzi, Matteo & Hallin, Marc, 2020. "Generalized dynamic factor models and volatilities: Consistency, rates, and prediction intervals," Journal of Econometrics, Elsevier, vol. 216(1), pages 4-34.
    16. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    17. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    18. Čížek, Pavel, 2008. "General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
    19. Michelacci, Claudio & Zaffaroni, Paolo, 2000. "(Fractional) beta convergence," Journal of Monetary Economics, Elsevier, vol. 45(1), pages 129-153, February.
    20. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.

    More about this item

    Keywords

    embedding; principle components; re-scaled trajectory matrix; singular value decomposition; spectrum.;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2016-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.