IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/1998-3.html
   My bibliography  Save this paper

Exponential Smoothing Methods of Forecasting and General ARMA Time Series Representations

Author

Listed:
  • Shami, R.G.
  • Snyder, R.D.

Abstract

The focus of this paper is on the relationship between the exponential smoothing methods of forecasting and the integrated autoregressive-moving average models underlying them. In this paper we derive, for the first time, the general linear relationship between their parameters. A method, suitable for implementation on computer, is proposed to determine the pertinent quantities in this relationship. It is illustrated on common forms of exponential smoothing.

Suggested Citation

  • Shami, R.G. & Snyder, R.D., 1998. "Exponential Smoothing Methods of Forecasting and General ARMA Time Series Representations," Monash Econometrics and Business Statistics Working Papers 3/98, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:1998-3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shami, R.G. & Forbes, C.S., 2000. "A structural Time Series Model with Markov Switching," Monash Econometrics and Business Statistics Working Papers 10/00, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    Keywords

    FORECASTS ; TIME SERIES;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:1998-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.