IDEAS home Printed from https://ideas.repec.org/p/mrr/papers/wp073.html
   My bibliography  Save this paper

Random Scenario Forecasts Versus Stochastic Forecasts

Author

Listed:
  • Shripad Tuljapurkar

    (Stanford University)

  • Ronald D. Lee

    (University of California)

  • Qi Li

    (Stanford University)

Abstract

Probabilistic population forecasts are useful because they describe uncertainty in a quantitatively useful way. One approach (that we call LT) uses historical data to estimate stochastic models (e.g., a time series model) of vital rates, and then makes forecasts. Another (we call it RS) began as a kind of randomized scenario: we consider its simplest variant, in which expert opinion is used to make probability distributions for terminal vital rates, and smooth trajectories are followed over time. We use analysis and examples to show several key differences between these methods: serial correlations in the forecast are much smaller in LT; the variance in LT models of vital rates (especially fertility)is much higher than in RS models that are based on official expert scenarios; trajectories in LT are much more irregular than in RS; probability intervals in LT tend to widen faster over forecast time. Newer versions of RS have been developed that reduce or eliminate some of these differences.

Suggested Citation

  • Shripad Tuljapurkar & Ronald D. Lee & Qi Li, 2004. "Random Scenario Forecasts Versus Stochastic Forecasts," Working Papers wp073, University of Michigan, Michigan Retirement Research Center.
  • Handle: RePEc:mrr:papers:wp073
    as

    Download full text from publisher

    File URL: http://mrdrc.isr.umich.edu/publications/Papers/pdf/wp073.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianni Corsetti & Marco Marsili, 2013. "Previsioni stocastiche della popolazione nell’ottica di un Istituto Nazionale di Statistica," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 15(2-3), pages 5-29.
    2. F. C. Billari & R. Graziani & E. Melilli, 2012. "Stochastic population forecasts based on conditional expert opinions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 491-511, April.
    3. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    4. António Brandão Moniz, 2008. "Assessing scenarios on the future of work," Enterprise and Work Innovation Studies, Universidade Nova de Lisboa, IET/CICS.NOVA-Interdisciplinary Centre on Social Sciences, Faculty of Science and Technology, vol. 4(4), pages 91-106, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mrr:papers:wp073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MRRC Administrator (email available below). General contact details of provider: https://edirc.repec.org/data/isumius.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.