IDEAS home Printed from https://ideas.repec.org/p/mos/moswps/2009-33.html
   My bibliography  Save this paper

Optimal Monetary Policy with Asymmetric Targets

Author

Listed:
  • Peter J. Stemp

Abstract

We investigate the derivation of optimal interest rate rules in a simple stochastic framework. The monetary authority chooses to minimise an asymmetric loss function made up of the sum of squared components, where the monetary authority places positive weight on squared negative (positive) deviations of output (inflation) and zero weight on squared positive (negative) deviations. Recent approaches to monetary policy under asymmetric preferences have emphasised the adoption of a linear exponential (linex) preference structure. This paper presents a new and different analytic methodology that is based on the explicit calculation of semi-variances. This approach can be used to derive precise coefficients of the optimal interest rate rules. We derive optimal interest rate rules based on two different informational assumptions. In the first case, which we call a fixed interest rate rule, the monetary authority knows only the structure of the economy and the variance of sectoral shocks so that interest rates must take a constant value. In the second case, which we call a flexible interest rate rule, the monetary also has access to additional information in that it can observe the contemporaneous inflation rate. In this second case, we restrict our analysis to the class of linear interest rate rules. The more standard approach in the literature derives optimal monetary policy rules using symmetric loss functions, where monetary policy is designed to minimise the sum of squared components. We also compare optimal interest rate rules under both symmetric and asymmetric loss functions.

Suggested Citation

  • Peter J. Stemp, 2009. "Optimal Monetary Policy with Asymmetric Targets," Monash Economics Working Papers 33-09, Monash University, Department of Economics.
  • Handle: RePEc:mos:moswps:2009-33
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/eco/research/papers/2009/2409optimalmonetarystemp.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Monetary Economics; Interest Rate Rule; Inflation Target; Output Target; Asymmetric Loss Function; One-sided Target; Linex Preferences; Semi-Variance; Symmetric Loss Function.;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mos:moswps:2009-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Simon Angus (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.