IDEAS home Printed from https://ideas.repec.org/p/mod/recent/123.html
   My bibliography  Save this paper

Eigenvalue Ratio Estimators for the Number of Dynamic Factors

Author

Listed:
  • Maddalena Cavicchioli
  • Mario Forni
  • Marco Lippi
  • Paolo zaffaroni

Abstract

In this paper we introduce three dynamic eigenvalue ratio estimators for the number of dynamic factors. Two of them, the Dynamic Eigenvalue Ratio (DER) and the Dynamic Growth Ratio (DGR) are dynamic counterparts of the eigenvalue ratio estimators (ER and GR) proposed by Ahn and Horenstein (2013). The third, the Dynamic eigenvalue Difference Ratio (DDR), is a new one but closely related to the test statistic proposed by Onatsky (2009). The advantage of such estimators is that they do not require preliminary determination of discretionary parameters. Finally, a static counterpart of the latter estimator, called eigenvalue Difference Ratio estimator (DR), is also proposed. We prove consistency of such estimators and evaluate their performance under simulation. We conclude that both DDR and DR are valid alternatives to existing criteria. Application to real data gives new insights on the number of factors driving the US economy.

Suggested Citation

  • Maddalena Cavicchioli & Mario Forni & Marco Lippi & Paolo zaffaroni, 2016. "Eigenvalue Ratio Estimators for the Number of Dynamic Factors," Center for Economic Research (RECent) 123, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
  • Handle: RePEc:mod:recent:123
    as

    Download full text from publisher

    File URL: http://155.185.68.2/Recentpaper/recent-wp123.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brownlees, Christian & Mesters, Geert, 2021. "Detecting granular time series in large panels," Journal of Econometrics, Elsevier, vol. 220(2), pages 544-561.

    More about this item

    Keywords

    Generalized dynamic factor model; dynamic principal components; number of factors; static factor model;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mod:recent:123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/demodit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.