IDEAS home Printed from https://ideas.repec.org/p/mnb/wpaper/2023-3.html
   My bibliography  Save this paper

Optimal Forecast Combination Under Asymmetric Loss and Regime-Switching

Author

Listed:
  • Viola Monostoriné Grolmusz

    (Central Bank of Hungary)

Abstract

Forecast combinations have been repeatedly shown to outperform individual professional forecasts and complicated time series models in accuracy. Their ease of use and accuracy makes them important tools for policy decisions. While simple combinations work remarkably well in some situations, time-varying combinations can be even more accurate in other real-life scenarios involving economic forecasts. This paper uses a regime switching framework to model the time-variation in forecast combination weights. I use an optimization problem based on asymmetric loss functions in deriving optimal forecast combination weights. The switching framework is based on the work of Elliott and Timmermann (2005), however I extend their setup by using asymmetric quadratic loss in the optimization problem. This is an important extension, since with my setup it is possible to quantify and analyze optimal forecast biases for different directions and levels of asymmetry in the loss function, contributing to the vast literature on forecast bias. I interpret the equations for the optimal weights through analytical examples and examine how the weights depend on the model parameters, the level of asymmetry of the loss function and the transition probabilities and starting state.

Suggested Citation

  • Viola Monostoriné Grolmusz, 2023. "Optimal Forecast Combination Under Asymmetric Loss and Regime-Switching," MNB Working Papers 2023/3, Magyar Nemzeti Bank (Central Bank of Hungary).
  • Handle: RePEc:mnb:wpaper:2023/3
    as

    Download full text from publisher

    File URL: https://www.mnb.hu/letoltes/mnb-wp-2023-3-final.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yiyao & Lee, Tae-Hwy, 2014. "Asymmetric loss in the Greenbook and the Survey of Professional Forecasters," International Journal of Forecasting, Elsevier, vol. 30(2), pages 235-245.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Knüppel, Malte & Schultefrankenfeld, Guido, 2019. "Assessing the uncertainty in central banks’ inflation outlooks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1748-1769.
    2. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    3. Döpke Jörg & Fritsche Ulrich & Waldhof Gabi, 2019. "Theories, Techniques and the Formation of German Business Cycle Forecasts : Evidence from a survey of professional forecasters," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(2), pages 203-241, April.
    4. Tsuchiya, Yoichi, 2016. "Asymmetric loss and rationality of Chinese renminbi forecasts: An implication for the trade between China and the US," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 44(C), pages 116-127.
    5. Dovern, Jonas & Jannsen, Nils, 2017. "Systematic errors in growth expectations over the business cycle," International Journal of Forecasting, Elsevier, vol. 33(4), pages 760-769.
    6. Behrens, Christoph, 2020. "German trade forecasts since 1970: An evaluation using the panel dimension," Working Papers 26, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    7. Patrick Schmidt & Matthias Katzfuss & Tilmann Gneiting, 2021. "Interpretation of point forecasts with unknown directive," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 728-743, September.
    8. Demetrescu, Matei & Hacıoğlu Hoke, Sinem, 2019. "Predictive regressions under asymmetric loss: Factor augmentation and model selection," International Journal of Forecasting, Elsevier, vol. 35(1), pages 80-99.
    9. Tae-Hwy Lee & Tao Wang, 2023. "Estimation and Testing of Forecast Rationality with Many Moments," Papers 2309.09481, arXiv.org.
    10. Huh, Sungjun & Kim, Insu, 2020. "Growth forecast revisions over business cycles: Evidence from the Survey of Professional Forecasters," Economics Letters, Elsevier, vol. 196(C).
    11. Döpke Jörg & Fritsche Ulrich & Waldhof Gabi, 2019. "Theories, Techniques and the Formation of German Business Cycle Forecasts : Evidence from a survey of professional forecasters," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(2), pages 203-241, April.
    12. Jörg Döpke & Ulrich Fritsche & Karsten Müller, 2018. "Has Macroeconomic Forecasting changed after the Great Recession? - Panel-based Evidence on Accuracy and Forecaster Behaviour from Germany," Macroeconomics and Finance Series 201803, University of Hamburg, Department of Socioeconomics.
    13. Yoichi Tsuchiya, 2022. "Evaluating plant managers’ production plans over business cycles: asymmetric loss and rationality," SN Business & Economics, Springer, vol. 2(8), pages 1-29, August.
    14. Sun, Yuying & Wang, Shouyang & Zhang, Xun, 2018. "How efficient are China's macroeconomic forecasts? Evidences from a new forecasting evaluation approach," Economic Modelling, Elsevier, vol. 68(C), pages 506-513.
    15. Tsuchiya, Yoichi, 2015. "Herding behavior and loss functions of exchange rate forecasters over interventions and financial crises," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 266-276.
    16. Giovannelli, Alessandro & Pericoli, Filippo Maria, 2020. "Are GDP forecasts optimal? Evidence on European countries," International Journal of Forecasting, Elsevier, vol. 36(3), pages 963-973.
    17. Víctor López-Pérez, 2017. "Do professional forecasters behave as if they believed in the New Keynesian Phillips Curve for the euro area?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(1), pages 147-174, February.

    More about this item

    Keywords

    Forecast combination; Loss functions; Time-varying combination weights; Markov switching..;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mnb:wpaper:2023/3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lorant Kaszab (email available below). General contact details of provider: https://edirc.repec.org/data/mnbgvhu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.