IDEAS home Printed from https://ideas.repec.org/p/mit/sloanp/1799.html
   My bibliography  Save this paper

Solving Real-Life Locomotive Scheduling Problems

Author

Listed:
  • Ahuja, Ravindra
  • Liu, Jian
  • Orlin, James
  • Sharma, Dushyant
  • Shughart, Larry

Abstract

The locomotive scheduling problem (or the locomotive assignment problem) is to assign a consist (a set of locomotives) to each train in a pre-planned train schedule so as to provide them sufficient power to pull them from their origins to their destinations. Locomotive scheduling problems are among the most important problems in railroad scheduling. In this paper, we report the results of a study of the locomotive scheduling problem faced by CSX Transportation, a major US railroad company. We consider the planning version of the locomotive scheduling model (LSM), where there are multiple types of locomotives and we need to decide the set of locomotives to be assigned to each train. We present an integrated model that determines the set of active and deadheaded locomotives for each train, light traveling locomotives from power sources to power sinks, and train-to-train connections (specifying which inbound train and outbound trains can directly connect). An important feature of our model is that we explicitly consider consist-bustings and consistency. A consist is said to be busted when the set of locomotives coming on an inbound train is broken into subsets to be reassigned to two or more outbound trains. A solution is said to be consistent over a week with respect to a train, if the train gets the same locomotive assignment each day it runs. We give a mixed integer programming (MIP) formulation of the problem that contains about 197 thousand integer variables and 67 thousand constraints. An MIP of this size cannot be solved to optimality or near-optimality in acceptable running times using commercially available software. Using problem decomposition, integer programming, and very large-scale neighborhood search, we developed a solution technique to solve this problem within 30 minutes of computation time on a Pentium III computer. When we compared our solution with the solution obtained by the software in-house developed by CSX, we obtained a savings of over 400 locomotives, which translates into savings of over one hundred million dollars annuall

Suggested Citation

  • Ahuja, Ravindra & Liu, Jian & Orlin, James & Sharma, Dushyant & Shughart, Larry, 2003. "Solving Real-Life Locomotive Scheduling Problems," Working papers 4389-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
  • Handle: RePEc:mit:sloanp:1799
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/1721.1/1799
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mit:sloanp:1799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: None (email available below). General contact details of provider: https://edirc.repec.org/data/ssmitus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.