Generating ordinal data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Biswas, Atanu, 2004. "Generating correlated ordinal categorical random samples," Statistics & Probability Letters, Elsevier, vol. 70(1), pages 25-35, October.
- Philip M. Lurie & Matthew S. Goldberg, 1998. "An Approximate Method for Sampling Correlated Random Variables from Partially-Specified Distributions," Management Science, INFORMS, vol. 44(2), pages 203-218, February.
- Stanhope, Stephen, 2005. "Case studies in multivariate-to-anything transforms for partially specified random vector generation," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 68-79, August.
- Ferrari, Pier Alda & Annoni, Paola & Barbiero, Alessandro & Manzi, Giancarlo, 2011. "An imputation method for categorical variables with application to nonlinear principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2410-2420, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jorge A. Sefair & Oscar Guaje & Andrés L. Medaglia, 2021. "A column-oriented optimization approach for the generation of correlated random vectors," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 777-808, September.
- Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
- Tianyang Wang & James S. Dyer & Warren J. Hahn, 2017. "Sensitivity analysis of decision making under dependent uncertainties using copulas," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 117-139, November.
- Nadia Solaro & Alessandro Barbiero & Giancarlo Manzi & Pier Alda Ferrari, 2017. "A sequential distance-based approach for imputing missing data: Forward Imputation," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 395-414, June.
- Arboretti, Rosa & Bonnini, Stefano & Corain, Livio & Salmaso, Luigi, 2014. "A permutation approach for ranking of multivariate populations," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 39-57.
- Vit Prochazka & Stein W. Wallace, 2020. "Scenario tree construction driven by heuristic solutions of the optimization problem," Computational Management Science, Springer, vol. 17(2), pages 277-307, June.
- Arnab Chakraborty, 2006. "Generating multivariate correlated samples," Computational Statistics, Springer, vol. 21(1), pages 103-119, March.
- Zhaoxia Guo & Stein W. Wallace & Michal Kaut, 2019. "Vehicle Routing with Space- and Time-Correlated Stochastic Travel Times: Evaluating the Objective Function," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 654-670, October.
- Stanhope, Stephen, 2005. "Case studies in multivariate-to-anything transforms for partially specified random vector generation," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 68-79, August.
- Ilich, Nesa, 2009. "A matching algorithm for generation of statistically dependent random variables with arbitrary marginals," European Journal of Operational Research, Elsevier, vol. 192(2), pages 468-478, January.
- Baron Law, 2021. "Correlation Estimation in Hybrid Systems," Papers 2111.06042, arXiv.org, revised Jul 2023.
- Sovan Mitra, 2013. "Scenario Generation For Operational Risk," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(3), pages 163-187, July.
- David Corredor-Montenegro & Nicolás Cabrera & Raha Akhavan-Tabatabaei & Andrés L. Medaglia, 2021. "On the shortest $$\alpha$$ α -reliable path problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 287-318, April.
- I-Tung Yang, 2006. "Using Gaussian copula to simulate repetitive projects," Construction Management and Economics, Taylor & Francis Journals, vol. 24(9), pages 901-909.
- Soumyadip Ghosh & Henry Lam, 2019. "Robust Analysis in Stochastic Simulation: Computation and Performance Guarantees," Operations Research, INFORMS, vol. 67(1), pages 232-249, January.
- Mitra, Sovan & Lim, Sungmook & Karathanasopoulos, Andreas, 2019. "Regression based scenario generation: Applications for performance management," Operations Research Perspectives, Elsevier, vol. 6(C).
- Werner, Christoph & Bedford, Tim & Cooke, Roger M. & Hanea, Anca M. & Morales-Nápoles, Oswaldo, 2017. "Expert judgement for dependence in probabilistic modelling: A systematic literature review and future research directions," European Journal of Operational Research, Elsevier, vol. 258(3), pages 801-819.
- Kim, Byung-Cheol, 2022. "Multi-factor dependence modelling with specified marginals and structured association in large-scale project risk assessment," European Journal of Operational Research, Elsevier, vol. 296(2), pages 679-695.
- Athanassios N. Avramidis & Nabil Channouf & Pierre L'Ecuyer, 2009. "Efficient Correlation Matching for Fitting Discrete Multivariate Distributions with Arbitrary Marginals and Normal-Copula Dependence," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 88-106, February.
- Hui, Yer Van & Gao, Jia & Leung, Lawrence & Wallace, Stein, 2014. "Airfreight forwarder’s shipment planning under uncertainty: A two-stage stochastic programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 66(C), pages 83-102.
More about this item
Keywords
Likert scale; marginal distribution; Monte Carlo simulation; multivariate discrete random variable; non-linear principal component analysis; Pearson correlation coefficient;All these keywords.
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mil:wpdepa:2011-38. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DEMM Working Papers (email available below). General contact details of provider: https://edirc.repec.org/data/damilit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.