IDEAS home Printed from https://ideas.repec.org/p/max/cprwps/256.html
   My bibliography  Save this paper

The Two-way Mundlak Estimator

Author

Abstract

Mundlak (1978) shows that the fixed effects estimator is equivalent to the random effects estimator in the one-way error component model once the random individual effects are modeled as a linear function of all the averaged regressors over time. In the spirit of Mundlak, this paper shows that this result also holds for the two-way error component model once this individual and time effects are modeled as linear functions of all the averaged regressors across time and across individuals. Woolridge (2021) also shows that the two-way fixed effects estimator can be obtained as a pooled OLS with the regressors augmented by the time and individual averages and calls it the two-way Mundlak estimator. While Mundlak (1978) used GLS rather than OLS on this augmented regression, we show that both estimators are equivalent for this augmented regression. This extends Baltagi’s (2006) results from the one-way to the two-way error component model. The F test suggested by Mundlak (1978) to test for this correlation between the random effects and the regressors generate a Hausman (1978) type test that is easily generalizable to the two-way Mundlak regression. In fact, the resulting F-tests for the two-way error component regression are related to the Hausman type tests proposed by Kang (1985) for the two-way error component model.

Suggested Citation

  • Badi Baltagi, 2023. "The Two-way Mundlak Estimator," Center for Policy Research Working Papers 256, Center for Policy Research, Maxwell School, Syracuse University.
  • Handle: RePEc:max:cprwps:256
    as

    Download full text from publisher

    File URL: https://surface.syr.edu/cpr/469/
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua B. Gilbert & Zachary Himmelsbach & James Soland & Mridul Joshi & Benjamin W. Domingue, 2024. "Estimating Heterogeneous Treatment Effects with Item-Level Outcome Data: Insights from Item Response Theory," Papers 2405.00161, arXiv.org, revised Aug 2024.
    2. Baltagi, Badi H., 2024. "The multidimensional Mundlak estimator," Economics Letters, Elsevier, vol. 236(C).

    More about this item

    Keywords

    Mundlak Regression; Panel Data; Fixed and Random Effects; Two-way error components model; Hausman test;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:max:cprwps:256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Katrina Fiacchi (email available below). General contact details of provider: https://edirc.repec.org/data/cpsyrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.