IDEAS home Printed from https://ideas.repec.org/p/max/cprwps/188.html
   My bibliography  Save this paper

Predication in a Generalized Spatial Panel Data Model with Serial Correlation

Author

Listed:

Abstract

This paper considers the generalized spatial panel data model with serial correlation proposed by Lee and Yu (2012) which encompasses a lot of the spatial panel data models considered in the literature, and derives the best linear unbiased predictor (BLUP) for that model. This in turn provides valuable BLUP for several spatial panel models as special cases.

Suggested Citation

  • Badi Baltagi & Long Liu, 2016. "Predication in a Generalized Spatial Panel Data Model with Serial Correlation," Center for Policy Research Working Papers 188, Center for Policy Research, Maxwell School, Syracuse University.
  • Handle: RePEc:max:cprwps:188
    as

    Download full text from publisher

    File URL: https://surface.syr.edu/cpr/219/
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianning WANG & Jingrong DONG & Zhi XIAO & Guanjie HE, 2019. "A novel spatial mixed frequency forecasting model with application to Chinese regional GDP," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 54-77, June.

    More about this item

    Keywords

    Prediction; Panel Data; Fixed Effects; Random Effects; Serial Correlation; Spatial Error Correlation;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:max:cprwps:188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Katrina Fiacchi (email available below). General contact details of provider: https://edirc.repec.org/data/cpsyrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.