IDEAS home Printed from https://ideas.repec.org/p/mar/magkse/201115.html
   My bibliography  Save this paper

The Sequencing Problem in Sequential Investigation Processes

Author

Listed:
  • Jürgen-Peter Kretschmer

    (University of Marburg)

Abstract

Many decision problems in various fields of application can be characterized as diagnostic problems trying to assess the true state (of the world) of given cases. The investigation of assessment criteria improves the initial information according to observed signal outcomes, which are related to the possible states. Such sequential investigation processes can be analyzed within the framework of statistical decision theory, in which prior probability distributions of classes of cases are updated, allowing for a sorting of particular cases into ever smaller subclasses. However, receiving such information causes investigation costs. Besides the question about the set of relevant criteria, this defines two additional problems of statistical decision problems: the optimal stopping of investigations and the optimal sequence of investigating a given set of criteria. Unfortunately, no solution exists with which the optimal sequence can generally be determined. Therefore, the paper characterizes the associated problems and analyzes existing heuristics trying to approximate an optimal solution.

Suggested Citation

  • Jürgen-Peter Kretschmer, 2011. "The Sequencing Problem in Sequential Investigation Processes," MAGKS Papers on Economics 201115, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
  • Handle: RePEc:mar:magkse:201115
    as

    Download full text from publisher

    File URL: https://www.uni-marburg.de/en/fb02/research-groups/economics/macroeconomics/research/magks-joint-discussion-papers-in-economics/papers/2011-papers/15-2011_kretschmer.pdf
    File Function: First version, 2011
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Decision-Making; Uncertainty; Information; Bayesian Analysis; Statistical Decision Theory;
    All these keywords.

    JEL classification:

    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mar:magkse:201115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bernd Hayo (email available below). General contact details of provider: https://edirc.repec.org/data/vamarde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.