IDEAS home Printed from https://ideas.repec.org/p/mag/wpaper/100010.html
   My bibliography  Save this paper

Simulation and Estimation of Loss Given Default

Author

Listed:
  • Stefan Hlawatsch

    (Faculty of Economics and Management, Otto-von-Guericke University Magdeburg)

  • Sebastian Ostrowski

    (Faculty of Economics and Management, Otto-von-Guericke University Magdeburg)

Abstract

The aim of our paper is the development of an adequate estimation model for the loss given default, which incorporates the empirically observed bimodality and bounded nature of the distribution. Therefore we introduce an adjusted Expectation Maximization algorithm to estimate the parameters of a univariate mixture distribution, consisting of two beta distributions. Subsequently these estimations are compared with the Maximum Likelihood estimators to test the efficiency and accuracy of both algorithms. Furthermore we analyze our derived estimation model with estimation models proposed in the literature on a synthesized loan portfolio. The simulated loan portfolio consists of possibly loss-influencing parameters that are merged with loss given default observations via a quasi-random approach. Our results show that our proposed model exhibits more accurate loss given default estimators than the benchmark models for different simulated data sets comprising obligor-specific parameters with either high predictive power or low predictive power for the loss given default.

Suggested Citation

  • Stefan Hlawatsch & Sebastian Ostrowski, 2010. "Simulation and Estimation of Loss Given Default," FEMM Working Papers 100010, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
  • Handle: RePEc:mag:wpaper:100010
    as

    Download full text from publisher

    File URL: http://www.ww.uni-magdeburg.de/fwwdeka/femm/a2010_Dateien/2010_10.pdf
    File Function: First version, 2010
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jobst, Norbert J. & Zenios, Stavros A., 2005. "On the simulation of portfolios of interest rate and credit risk sensitive securities," European Journal of Operational Research, Elsevier, vol. 161(2), pages 298-324, March.
    2. Bastos, João A., 2010. "Forecasting bank loans loss-given-default," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2510-2517, October.
    3. Bernd Engelmann & Robert Rauhmeier (ed.), 2006. "The Basel II Risk Parameters," Springer Books, Springer, number 978-3-540-33087-5, January.
    4. Esa Jokivuolle & Samu Peura, 2003. "Incorporating Collateral Value Uncertainty in Loss Given Default Estimates and Loan‐to‐value Ratios," European Financial Management, European Financial Management Association, vol. 9(3), pages 299-314, September.
    5. Paul Glasserman & Wanmo Kang & Perwez Shahabuddin, 2008. "Fast Simulation of Multifactor Portfolio Credit Risk," Operations Research, INFORMS, vol. 56(5), pages 1200-1217, October.
    6. Dermine, J. & de Carvalho, C. Neto, 2006. "Bank loan losses-given-default: A case study," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1219-1243, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter-Hendrik Ingermann & Frederik Hesse & Christian Bélorgey & Andreas Pfingsten, 2016. "The recovery rate for retail and commercial customers in Germany: a look at collateral and its adjusted market values," Business Research, Springer;German Academic Association for Business Research, vol. 9(2), pages 179-228, August.
    2. Xia, Yufei & Zhao, Junhao & He, Lingyun & Li, Yinguo & Yang, Xiaoli, 2021. "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1590-1613.
    3. Han, Chulwoo & Jang, Youngmin, 2013. "Effects of debt collection practices on loss given default," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 21-31.
    4. Yuta Tanoue & Satoshi Yamashita & Hideaki Nagahata, 2020. "Comparison study of two-step LGD estimation model with probability machines," Risk Management, Palgrave Macmillan, vol. 22(3), pages 155-177, September.
    5. Chen, Xiaowei & Wang, Gang & Zhang, Xiangting, 2019. "Modeling recovery rate for leveraged loans," Economic Modelling, Elsevier, vol. 81(C), pages 231-241.
    6. Christophe Hurlin & Jérémy Leymarie & Antoine Patin, 2018. "Loss functions for LGD model comparison," Working Papers halshs-01516147, HAL.
    7. Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020. "The determinants of bank loan recovery rates in good times and bad – New evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
    8. Thamayanthi Chellathurai, 2017. "Probability Density Of Recovery Rate Given Default Of A Firm’S Debt And Its Constituent Tranches," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    9. Tomas Konecny & Jakub Seidler & Aelta Belyaeva & Konstantin Belyaev, 2017. "The Time Dimension of the Links Between Loss Given Default and the Macroeconomy," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 67(6), pages 462-491, October.
    10. Bastos, João A. & Matos, Sara M., 2022. "Explainable models of credit losses," European Journal of Operational Research, Elsevier, vol. 301(1), pages 386-394.
    11. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    12. João Bastos, 2014. "Ensemble Predictions of Recovery Rates," Journal of Financial Services Research, Springer;Western Finance Association, vol. 46(2), pages 177-193, October.
    13. Gürtler, Marc & Hibbeln, Martin, 2013. "Improvements in loss given default forecasts for bank loans," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2354-2366.
    14. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, January.
    15. Hurlin, Christophe & Leymarie, Jérémy & Patin, Antoine, 2018. "Loss functions for Loss Given Default model comparison," European Journal of Operational Research, Elsevier, vol. 268(1), pages 348-360.
    16. Wojciech Starosta, 2020. "Modelling Recovery Rate for Incomplete Defaults Using Time Varying Predictors," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 12(2), pages 195-225, June.
    17. Yuki Itoh, 2008. "Recovery Process Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 15(3), pages 307-347, December.
    18. Tanoue, Yuta & Kawada, Akihiro & Yamashita, Satoshi, 2017. "Forecasting loss given default of bank loans with multi-stage model," International Journal of Forecasting, Elsevier, vol. 33(2), pages 513-522.
    19. Qi, Min & Zhao, Xinlei, 2011. "Comparison of modeling methods for Loss Given Default," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2842-2855, November.
    20. Christoph Memmel & Angelika Sachs & Ingrid Stein, 2012. "Contagion in the Interbank Market with Stochastic Loss Given Default," International Journal of Central Banking, International Journal of Central Banking, vol. 8(3), pages 177-206, September.

    More about this item

    Keywords

    Bimodality; EM Algorithm; Loss Given Default; Maximum Likelihood; Mixture Distribution; Portfolio Simulation;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mag:wpaper:100010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Guido Henkel (email available below). General contact details of provider: https://edirc.repec.org/data/fwmagde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.