IDEAS home Printed from https://ideas.repec.org/p/lms/mansci/mrg-0021.html
   My bibliography  Save this paper

How big should my store be? On the interplay between shelf-space, demand learning and assortment decisions

Author

Listed:
  • Kevin Glazebrook

    (Department of Management Science, Lancaster University Management School)

  • Joern Meissner

    (Department of Logistics, Kuehne Logistics University)

  • Jochen Schurr

    (Department of Management Science, Lancaster University Management School)

Abstract

A fundamental decision every merchant has to make is on is how large his stores should be. This is particularly true in light of the drastic changes retail concepts have seen in the last decade. There has been a noticeable tendency, particularly for food and convenience retailers, to open more and smaller stores. Also, there has been a well-documented recent shift in paradigm in apparel retailing with the so called fast-fashion business model. Short lead times have resulted in flexibility that allows retailers to adjust the assortment of products offered on sale at their stores quickly enough to adapt to popular fashion trends. Based on revised estimates of the merchandise's popularity, they then weed out unpopular items and re-stock demonstrably popular ones on a week-by-week basis. However, despite the obvious similarity of reliance on better demand learning, fashion-fashion retailers like Zara have opted to do exactly the opposite as groceries and opened sizable stores in premium locations. This paradox has not been explained in the literature so far. In this paper, we aim to calculate the profit of a retailer in such a complicated environment with demand learning and frequent assortment decisions in particular in dependence of the most valuable resource of a retailer: shelf-space. To be able to achieve this, we extend the recent approaches in the management literature to handle the sequential resource allocation problems that arises in this context with a concurrent need for learning. We investigate the use of multi-armed bandits to model the assortment decisions under demand learning, whereby this aspect is captured by a Bayesian Gamma-Poisson model. Our model enables us to characterize the marginal value of shelf-space and to calculate the optimal store size under learning and assortment decisions. An extensive numerical study confirms that the store size choices observed in real life can be explained by the varying length of selling seasons different retailers face.

Suggested Citation

  • Kevin Glazebrook & Joern Meissner & Jochen Schurr, 2012. "How big should my store be? On the interplay between shelf-space, demand learning and assortment decisions," Working Papers MRG/0021, Department of Management Science, Lancaster University, revised Dec 2012.
  • Handle: RePEc:lms:mansci:mrg-0021
    as

    Download full text from publisher

    File URL: http://www.meiss.com/download/SC-Glazebrook-Meissner-Schurr.pdf
    File Function: Full Paper
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Gürhan Kök & Marshall L. Fisher & Ramnath Vaidyanathan, 2008. "Assortment Planning: Review of Literature and Industry Practice," International Series in Operations Research & Management Science, in: Narendra Agrawal & Stephen A. Smith (ed.), Retail Supply Chain Management, chapter 0, pages 99-153, Springer.
    2. Yang, Ming-Hsien & Chen, Wen-Cher, 1999. "A study on shelf space allocation and management," International Journal of Production Economics, Elsevier, vol. 60(1), pages 309-317, April.
    3. Marshall Fisher & Ananth Raman, 1996. "Reducing the Cost of Demand Uncertainty Through Accurate Response to Early Sales," Operations Research, INFORMS, vol. 44(1), pages 87-99, February.
    4. Hariga, Moncer A. & Al-Ahmari, Abdulrahman & Mohamed, Abdel-Rahman A., 2007. "A joint optimisation model for inventory replenishment, product assortment, shelf space and display area allocation decisions," European Journal of Operational Research, Elsevier, vol. 181(1), pages 239-251, August.
    5. Felipe Caro & Jérémie Gallien, 2007. "Dynamic Assortment with Demand Learning for Seasonal Consumer Goods," Management Science, INFORMS, vol. 53(2), pages 276-292, February.
    6. Brezzi, Monica & Lai, Tze Leung, 2002. "Optimal learning and experimentation in bandit problems," Journal of Economic Dynamics and Control, Elsevier, vol. 27(1), pages 87-108, November.
    7. Yücel, Eda & Karaesmen, Fikri & Salman, F. Sibel & Türkay, Metin, 2009. "Optimizing product assortment under customer-driven demand substitution," European Journal of Operational Research, Elsevier, vol. 199(3), pages 759-768, December.
    8. Marcel Corstjens & Peter Doyle, 1981. "A Model for Optimizing Retail Space Allocations," Management Science, INFORMS, vol. 27(7), pages 822-833, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Han & Ilya O. Ryzhov & Boris Defourny, 2016. "Optimal Learning in Linear Regression with Combinatorial Feature Selection," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 721-735, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hübner, Alexander & Schaal, Kai, 2017. "A shelf-space optimization model when demand is stochastic and space-elastic," Omega, Elsevier, vol. 68(C), pages 139-154.
    2. Flamand, Tulay & Ghoniem, Ahmed & Haouari, Mohamed & Maddah, Bacel, 2018. "Integrated assortment planning and store-wide shelf space allocation: An optimization-based approach," Omega, Elsevier, vol. 81(C), pages 134-149.
    3. Hübner, Alexander H. & Kuhn, Heinrich, 2012. "Retail category management: State-of-the-art review of quantitative research and software applications in assortment and shelf space management," Omega, Elsevier, vol. 40(2), pages 199-209, April.
    4. Bianchi-Aguiar, Teresa & Hübner, Alexander & Carravilla, Maria Antónia & Oliveira, José Fernando, 2021. "Retail shelf space planning problems: A comprehensive review and classification framework," European Journal of Operational Research, Elsevier, vol. 289(1), pages 1-16.
    5. M M Lotfi & M Rabbani & S F Ghaderi, 2011. "A weighted goal programming approach for replenishment planning and space allocation in a supermarket," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1128-1137, June.
    6. J Irion & J-C Lu & F A Al-Khayyal & Y-C Tsao, 2011. "A hierarchical decomposition approach to retail shelf space management and assortment decisions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1861-1870, October.
    7. Irion, Jens & Lu, Jye-Chyi & Al-Khayyal, Faiz & Tsao, Yu-Chung, 2012. "A piecewise linearization framework for retail shelf space management models," European Journal of Operational Research, Elsevier, vol. 222(1), pages 122-136.
    8. Alexander Hübner & Kai Schaal, 2017. "Effect of replenishment and backroom on retail shelf-space planning," Business Research, Springer;German Academic Association for Business Research, vol. 10(1), pages 123-156, June.
    9. Bianchi-Aguiar, Teresa & Silva, Elsa & Guimarães, Luis & Carravilla, Maria Antónia & Oliveira, José F., 2018. "Allocating products on shelves under merchandising rules: Multi-level product families with display directions," Omega, Elsevier, vol. 76(C), pages 47-62.
    10. Lotfi, M.M. & Torabi, S.A., 2011. "A fuzzy goal programming approach for mid-term assortment planning in supermarkets," European Journal of Operational Research, Elsevier, vol. 213(2), pages 430-441, September.
    11. Hasmukh Gajjar & Gajendra Adil, 2010. "A piecewise linearization for retail shelf space allocation problem and a local search heuristic," Annals of Operations Research, Springer, vol. 179(1), pages 149-167, September.
    12. Hansen, Jared M. & Raut, Sumit & Swami, Sanjeev, 2010. "Retail Shelf Allocation: A Comparative Analysis of Heuristic and Meta-Heuristic Approaches," Journal of Retailing, Elsevier, vol. 86(1), pages 94-105.
    13. Robert Russell & Timothy Urban, 2010. "The location and allocation of products and product families on retail shelves," Annals of Operations Research, Springer, vol. 179(1), pages 131-147, September.
    14. Gecili, Hakan & Parikh, Pratik J., 2022. "Joint shelf design and shelf space allocation problem for retailers," Omega, Elsevier, vol. 111(C).
    15. Yan-Kwang Chen & Shi-Xin Weng & Tsai-Pei Liu, 2020. "Teaching–Learning Based Optimization (TLBO) with Variable Neighborhood Search to Retail Shelf-Space Allocation," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    16. Zhang, Wei & Rajaram, Kumar, 2017. "Managing limited retail space for basic products: Space sharing vs. space dedication," European Journal of Operational Research, Elsevier, vol. 263(3), pages 768-781.
    17. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    18. Li Chen & Adam J.Mersereau & Zhe (Frank) Wang, 2017. "Optimal Merchandise Testing with Limited Inventory," Operations Research, INFORMS, vol. 65(4), pages 968-991, August.
    19. Ali Fattahi & Sriram Dasu & Reza Ahmadi, 2019. "Mass Customization and “Forecasting Options’ Penetration Rates Problem”," Operations Research, INFORMS, vol. 67(4), pages 1120-1134, July.
    20. Andrew Lim & Brian Rodrigues & Xingwen Zhang, 2004. "Metaheuristics with Local Search Techniques for Retail Shelf-Space Optimization," Management Science, INFORMS, vol. 50(1), pages 117-131, January.

    More about this item

    Keywords

    retailing; assortment planning; multi-armed bandit; store size;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing
    • L93 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Air Transportation
    • L83 - Industrial Organization - - Industry Studies: Services - - - Sports; Gambling; Restaurants; Recreation; Tourism

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lms:mansci:mrg-0021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joern Meissner (email available below). General contact details of provider: https://edirc.repec.org/data/degraus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.