IDEAS home Printed from https://ideas.repec.org/p/lec/leecon/06-5.html
   My bibliography  Save this paper

Model Uncertainty and Bayesian Model Averaging in Vector Autoregressive Processes

Author

Listed:
  • Rodney W. Strachan
  • Herman K. van Dijk

Abstract

Economic forecasts and policy decisions are often informed by empirical analysis based on econometric models. However, inference based upon a single model, when several viable models exist, limits its usefulness. Taking account of model uncertainty, a Bayesian model averaging procedure is presented which allows for unconditional inference within the class of vector autoregressive (VAR) processes. Several features of VAR process are investigated. Measures on manifolds are employed in order to elicit uniform priors on subspaces defined by particular structural features of VARs. The features considered are the number and form of the equilibrium economic relations and deterministic processes. Posterior probabilities of these features are used in a model averaging approach for forecasting and impulse response analysis. The methods are applied to investigate stability of the "Great Ratios" in U.S. consumption, investment and income, and the presence and effects of permanent shocks in these series. The results obtained indicate the feasibility of the proposed method.

Suggested Citation

  • Rodney W. Strachan & Herman K. van Dijk, 2006. "Model Uncertainty and Bayesian Model Averaging in Vector Autoregressive Processes," Discussion Papers in Economics 06/5, Division of Economics, School of Business, University of Leicester.
  • Handle: RePEc:lec:leecon:06/5
    as

    Download full text from publisher

    File URL: https://www.le.ac.uk/economics/research/RePEc/lec/leecon/dp06-5.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radchenko, Stanislav & Tsurumi, Hiroki, 2006. "Limited information Bayesian analysis of a simultaneous equation with an autocorrelated error term and its application to the U.S. gasoline market," Journal of Econometrics, Elsevier, vol. 133(1), pages 31-49, July.
    2. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    3. Gary Koop & Simon M. Potter & Rodney W. Strachan, 2008. "Re-Examining the Consumption-Wealth Relationship: The Role of Model Uncertainty," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2-3), pages 341-367, March.
    4. Rodney Strachan & Herman K. van Dijk, "undated". "Bayesian Model Averaging in Vector Autoregressive Processes with an Investigation of Stability of the US Great Ratios and Risk of a Liquidity Trap in the USA, UK and Japan," MRG Discussion Paper Series 1407, School of Economics, University of Queensland, Australia.
    5. Deborah Gefang, 2012. "Money‐output Causality Revisited – A Bayesian Logistic Smooth Transition VECM Perspective," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(1), pages 131-151, February.

    More about this item

    Keywords

    Posterior probability; Grassman manifold; Orthogonal group; Cointegration; Model averaging; Stochastic trend; Impulse response; Vector autoregressive model.;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lec:leecon:06/5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Abbie Sleath (email available below). General contact details of provider: https://edirc.repec.org/data/deleiuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.