IDEAS home Printed from https://ideas.repec.org/p/lat/legeco/e2013-01.html
   My bibliography  Save this paper

(VF)Économétrie spatiale et données spatiales empilées dans le temps : Proposition d'une modélisation adaptée.(VA)Spatial Econometric and Spatial Data Pooled over Time: Towards an adapted modelling approach

Author

Listed:
  • Jean Dubé

    (Université du Québec à Rimouski)

  • Diègo Legros

    (LEG/AMIE - CNRS FRE 3496 - Université de Bourgogne)

Abstract

(VF)L'article s'attache à présenter la particularité des données spatiales empilées et montre pourquoi il peut être contre-indiqué d'utiliser les approches spatiales développées pour les données en coupe transversale empilées dans le temps. La dimension temps implique des relations unidirectionnelles, par opposition aux relations multidirectionnelles spatiales. La construction d'une matrice de pondérations spatio-temporelles unique, à partir de matrices de pondérations spatiales et temporelles, permet d'utiliser les modèles et les tests développés pour les données spatiales tout en tenant compte des deux dimensions simultanément. Une série d'applications empiriques montre que la non prise en compte de la dimension temporelle dans les analyses a pour conséquence de surévaluer les mesures de la dépendance spatiale en plus de surévaluer les coefficients autorégressifs spatiaux estimés. Finalement, la prise en compte des deux dimensions, spatiales et temporelles, permet de générer de nouvelles variables explicatives dynamiques, comparables à des effets de pairs, qui s'avèrent significatives dans l’explication des prix de vente immobiliers. (VA)This paper presents the characteristics of spatial data pooled over time and show why these data bases cannot be considered as the same way as spatial panel data or strictly spatial data. The temporal dimension implies a unidirectionality of relations, while spatial relations are multidirectional. The construction of spatio-temporal weights matrix, lying on spatial and temporal weights matrices, allow to use usual statistic models and tests developed for spatial analysis while accounting simultaneously for temporal and spatial dimensions. Empirical examples established the impact of neglecting the temporal dimension in spatial analysis and show how such approach overestimate the pattern of spatial dependence as well as overestimate the spatial autoregressive coefficient estimated. Finally, accounting for both dimensions, spatial and temporal, allow to generate additional independent variables, considering dynamic effect, that appear to play a significant role on determination of real estate prices.

Suggested Citation

  • Jean Dubé & Diègo Legros, 2013. "(VF)Économétrie spatiale et données spatiales empilées dans le temps : Proposition d'une modélisation adaptée.(VA)Spatial Econometric and Spatial Data Pooled over Time: Towards an adapted modelling ap," LEG - Document de travail - Economie 2013-01, LEG, Laboratoire d'Economie et de Gestion, CNRS, Université de Bourgogne.
  • Handle: RePEc:lat:legeco:e2013-01
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lat:legeco:e2013-01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/latecfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.