IDEAS home Printed from https://ideas.repec.org/p/kan/wpaper/202409.html
   My bibliography  Save this paper

Stein-like Common Correlated Effects Estimation Under Structural Breaks

Author

Listed:
  • Shahnaz Parsaeian

    (Department of Economics, University of Kansas, Lawrence, KS 66045)

Abstract

This paper develops a Stein-like combined estimator for large heterogeneous panel data models under common structural breaks. The model allows for cross-sectional dependence through a general multifactor error structure. By utilizing the common correlated effects (CCE) estimation technique, we propose a Stein-like combined estimator of the CCE full-sample estimator (i.e., estimation using both the pre-break and post-break observations) and the CCE post-break estimator (i.e., estimation using only the post-break sample observations). The proposed Stein-like combined estimator benefits from exploiting the pre-break sample observations. We derive the optimal combination weight by minimizing the asymptotic risk. We show the superiority of the CCE Stein-like combined estimator over the CCE post-break estimator in terms of the asymptotic risk. Further, we establish the asymptotic properties of the CCE mean group Stein-like combined estimator. The finite sample performance of our proposed estimator is investigated using Monte Carlo experiments and an empirical application of predicting the output growth of industrialized countries.

Suggested Citation

  • Shahnaz Parsaeian, 2024. "Stein-like Common Correlated Effects Estimation Under Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202409, University of Kansas, Department of Economics.
  • Handle: RePEc:kan:wpaper:202409
    as

    Download full text from publisher

    File URL: https://kuwpaper.ku.edu/2024Papers/202409.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Common correlated effects; Cross-sectional dependence; Heterogeneous panels; Structural breaks.;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kan:wpaper:202409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Zongwu Cai (email available below). General contact details of provider: https://edirc.repec.org/data/deuksus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.