IDEAS home Printed from https://ideas.repec.org/p/isu/genres/10109.html
   My bibliography  Save this paper

Algebraic Theory of Portfolio Allocation, An

Author

Listed:
  • Hennessy, David A.
  • Lapan, Harvey E.

Abstract

Diversification, a central issue in the study of capital allocation, has much to do with symmetries and asymmetries in the distribution of asset returns. A diversified portfolio imposes symmetry on the allocation vector in order to balance out much of the asymmetries in the returns vector. Using group and majorization theory, we explore what can be established about the allocation vector when the asymmetries in the returns vector are carefully controlled. The key insight is that preferences over allocations can be partially ordered via majorized convex hulls that have been generated by group elements. It is shown that transitive permutation groups, rather than the more structured permutation symmetric group, suffice to ensure complete portfolio diversification. Point-wise stabilizer subgroups admit separability in the allocation of funds across sectors. When, together with imperfect symmetry in the sources of randomness, asset returns differ by heterogeneity in location or scale parameters then we bound the admissible allocation vector by a set of linear constraints. For a distribution that is symmetric under reflection groups, the linear constraints may be further strengthened whenever there exists an hyperplane that separates convex sets.

Suggested Citation

  • Hennessy, David A. & Lapan, Harvey E., 2003. "Algebraic Theory of Portfolio Allocation, An," Staff General Research Papers Archive 10109, Iowa State University, Department of Economics.
  • Handle: RePEc:isu:genres:10109
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David A. Hennessy, 2004. "Orthogonal Subgroups for Portfolio Choice," Economics Bulletin, AccessEcon, vol. 7(1), pages 1-7.
    2. Marat Ibragimov & Rustam Ibragimov, 2007. "Market Demand Elasticity and Income Inequality," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 32(3), pages 579-587, September.
    3. Hennessy, David A. & Lapan, Harvey E., 2009. "Harmonic symmetries of imperfect competition on circular city," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 124-146, January.
    4. repec:ebl:ecbull:v:7:y:2004:i:1:p:1-7 is not listed on IDEAS

    More about this item

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isu:genres:10109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Curtis Balmer (email available below). General contact details of provider: https://edirc.repec.org/data/deiasus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.