IDEAS home Printed from https://ideas.repec.org/p/ipe/ipetds/2229.html
   My bibliography  Save this paper

Sobrenomes e Ancestralidade no Brasil

Author

Listed:
  • Leonardo Monasterio

Abstract

Este trabalho apresenta um método de classificação da ancestralidade dos sobrenomes dos brasileiros nas seguintes classes: ibérica, italiana, japonesa, alemã e leste europeia. A partir de fontes históricas diversas, montou-se uma base de dados da ancestralidade dos sobrenomes. Essas informações formam a base para a aplicação de algoritmos de classificação de fuzzy matching e de machine learning nos mais de 46 milhões de trabalhadores da Relação Anual de Informações Sociais (Rais) Migra de 2013. A imensa maioria (96,4%) dos sobrenomes únicos da Rais foi identificada com o processo de fuzzy matching e os demais com o método proposto por Cavnar e Trenkle (1994). A comparação dos resultados do procedimento com dados sobre estrangeiros no Censo Demográfico de 1920 e a distribuição geográfica dos sobrenomes não ibéricos reforçam a acurácia do procedimento. This paper presents a method for classifying the ancestry of Brazilian surnames based on historical sources. The information obtained forms the basis for applying fuzzy matching and machine learning classification algorithms to more than 46 million workers in five categories: Iberian, Italian, Japanese, German and East European. The vast majority (96.4%) of the single surnames were identified using a fuzzy matching and the rest using a method proposed by Cavnar and Trenkle (1994). A comparison of the results of the procedures with data on foreigners in the 1920 Census and with the geographic distribution of non-Iberian surnames underscores the accuracy of the procedure.

Suggested Citation

  • Leonardo Monasterio, 2016. "Sobrenomes e Ancestralidade no Brasil," Discussion Papers 2229, Instituto de Pesquisa Econômica Aplicada - IPEA.
  • Handle: RePEc:ipe:ipetds:2229
    as

    Download full text from publisher

    File URL: http://www.ipea.gov.br/portal/images/stories/PDFs/TDs/td_2229.pdf
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipe:ipetds:2229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fabio Schiavinatto (email available below). General contact details of provider: https://edirc.repec.org/data/ipeaabr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.