IDEAS home Printed from https://ideas.repec.org/p/ipe/ipetds/1483.html
   My bibliography  Save this paper

Regressão Quantílica com Correção Para a Seletividade Amostral: Estimativa dos Retornos Educacionais e Diferenciais Raciais na Distribuição de Salários das Mulheres no Brasil

Author

Listed:
  • Danilo Coelho
  • Róbert Veszteg
  • Fabio Veras Soares

Abstract

Este texto estima os retornos educacionais e diferenciais raciais na distribuição de salários das mulheres no Brasil, usando regressão quantílica com correção semiparamétrica para viés de seleção amostral. As estimativas mostram que os retornos educacionais são elevados e que não são constantes ao longo da distribuição salarial. Tanto os retornos educacionais quanto os diferenciais raciais são mais elevados nos pontos mais altos da distribuição de salário condicional, o que indica, no caso dos diferenciais raciais, que as mulheres negras enfrentam um teto de vidro nos níveis salariais mais altos. Para os diferenciais por anos de estudo, questões como a qualidade da educação podem ser um fator importante na explicação da desigualdade salarial entre as mulheres. O texto revela que o uso de uma especificação probit para a equação de participação, a fim de corrigir problemas de seleção, produz resultados muito semelhantes à correção semiparamétrica tanto para os retornos educacionais quanto para a discriminação racial. Palavras-chave: discriminação de gênero; discriminação racial; regressão quantílica; correção de seleção não paramétrica. We estimate the returns to education for women and the racial wage differential among women over the wage distribution in Brazil by using quantile regression with semiparametric correction for sample selection. Our estimates show that the returns to education are high and that they are not constant along the wage distribution. Both returns to education and the racial wage differentials are higher at higher points of (the conditional) wage distribution. Black women seem to be facing a glass-ceiling in the higher wage segment of the distribution. In addition, quality of education seems also to play some role in the inequality observed among higher paid women. The paper also reveals that using a probit specification to the participation equation in order to correct selection issues yields very similar results to the semiparametric correction for both returns to education and racial discrimination. Keywords: gender discrimination; racial discrimination; quantile regression; nonparametric selection correction.

Suggested Citation

  • Danilo Coelho & Róbert Veszteg & Fabio Veras Soares, 2010. "Regressão Quantílica com Correção Para a Seletividade Amostral: Estimativa dos Retornos Educacionais e Diferenciais Raciais na Distribuição de Salários das Mulheres no Brasil," Discussion Papers 1483, Instituto de Pesquisa Econômica Aplicada - IPEA.
  • Handle: RePEc:ipe:ipetds:1483
    as

    Download full text from publisher

    File URL: http://www.ipea.gov.br/portal/images/stories/PDFs/TDs/td_1483.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo P. S. Fiuza & Barbara Caballero, 2015. "Estimations od Generic Drug Entry in Brazil using count versus ordered models," Discussion Papers 0186, Instituto de Pesquisa Econômica Aplicada - IPEA.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipe:ipetds:1483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fabio Schiavinatto (email available below). General contact details of provider: https://edirc.repec.org/data/ipeaabr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.