Author
Listed:
- Rafael Perez Ribas
- Ana Flávia Machado
Abstract
O painel da Pesquisa Mensal de Emprego (PME) do Instituto Brasileiro de Geografia e Estatística (IBGE) é, sem dúvida alguma, uma das bases de dados mais ricas do Brasil para investigações de fenômenos relativos ao mercado de trabalho. Isso devido a sua natureza longitudinal. Entretanto, por enfatizar apenas o mercado de trabalho, seu questionário traz apenas informações relativas a esta fonte de renda, não considerando outros tipos de rendimentos, como pensões, aposentadorias, transferências sociais etc. Dada esta limitação, este artigo apresenta uma proposta para aumentar a utilidade da atual PME. Esta proposta consiste em imputar a renda nãotrabalho, utilizando um sistema de equações estimado com base na Pesquisa Nacional por Amostra de Domicílios (Pnad), também conduzida pelo IBGE. Além de descrever o modelo de imputação e sua consistência em termos de reprodução na PME dos mesmos indicadores da Pnad, o artigo levanta alguns fatos estilizados sobre pobreza e desigualdade em Regiões Metropolitanas (RMs) brasileiras. A natureza dinâmica desses fatos estilizados os impossibilita de serem levantados com o uso de outra base de dados no Brasil que não seja a própria PME imputada. Os resultados contemplam basicamente os seguintes pontos: sazonalidade e tendência da pobreza e da desigualdade; taxas de transição para fora e para dentro da pobreza; e comparação entre as incidências de pobreza crônica e pobreza observada. The panel data of the Brazilian Monthly Employment Survey – Pesquisa Mensal de Emprego (PME/IBGE) is actually one of the richest datasets for analysis of labor market in Brazil. The reason is its longitudinal design. Since it is only addressed to labor market investigations, its questionnaire fields only information related to labor income though, not considering other types of income sources, such as pensions, retirement benefits, social transfers etc. Given such a limitation, this paper presents a proposal to improve PME’s utility. This proposal consists of imputing non-labor income at PME, based on an equation system estimated by means of the Brazilian Household Survey – Pesquisa Nacional por Amostra de Domicílios (Pnad/IBGE). Besides describing this imputation model and its consistency in reproducing the same statistics at both PME and Pnad, the paper presents some stylized facts on the dynamics of poverty and inequality in Brazilian Metropolitan Regions (MRs). Due to their dynamic feature, it is indeed impossible to estimate these facts using another Brazilian data that not the imputed PME. Our results basically regard the following issues: seasonality and tendency of poverty and inequality; rates of transition into and out of poverty; and comparison between the incidence rates of chronic poverty and observed poverty.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipe:ipetds:1363. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fabio Schiavinatto (email available below). General contact details of provider: https://edirc.repec.org/data/ipeaabr.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.