IDEAS home Printed from https://ideas.repec.org/p/inu/caeprp/2018008.html
   My bibliography  Save this paper

Recursive Utility and Thompson Aggregators, II: Uniqueness of the Recursive Utility Representation

Author

Listed:
  • Robert Becker

    (Indiana University)

  • Juan Pablo Rincon-Zapatero

    (Universidad Carlos III de Madrid)

Abstract

We reconsider the theory of Thompson aggregators proposed by Mari-nacci and Montrucchio [30]. We demonstrate the Koopmans equation has a unique utility function solution given a Thompson aggregator. Uniqueness holds only on the interior of the commodity spaces positive cone. Our proof veries the Koopmans operator is a u0 concave operator. We verify this using general sufficient conditions due to Liang, et al [28]. Previous published results apply variants of the contraction mapping theorem to the space of possibly utility functions endowed with the Thompson metric. Concave operator methods work on the possible utility function space with its norm topology. Our approach combines order and metric structures to demonstrate uniqueness differently than in the existing literature.

Suggested Citation

  • Robert Becker & Juan Pablo Rincon-Zapatero, 2018. "Recursive Utility and Thompson Aggregators, II: Uniqueness of the Recursive Utility Representation," CAEPR Working Papers 2018-008, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
  • Handle: RePEc:inu:caeprp:2018008
    as

    Download full text from publisher

    File URL: https://caepr.indiana.edu/RePEc/inu/caeprp/caepr2018-008.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Le Van, Cuong & Vailakis, Yiannis, 2005. "Recursive utility and optimal growth with bounded or unbounded returns," Journal of Economic Theory, Elsevier, vol. 123(2), pages 187-209, August.
    2. V. Filipe Martins-da-Rocha & Yiannis Vailakis, 2013. "Fixed point for local contractions: Applications to recursive utility," International Journal of Economic Theory, The International Society for Economic Theory, vol. 9(1), pages 23-33, March.
    3. Lucas, Robert Jr. & Stokey, Nancy L., 1984. "Optimal growth with many consumers," Journal of Economic Theory, Elsevier, vol. 32(1), pages 139-171, February.
    4. Bloise, Gaetano & Vailakis, Yiannis, 2018. "Convex dynamic programming with (bounded) recursive utility," Journal of Economic Theory, Elsevier, vol. 173(C), pages 118-141.
    5. Łukasz Balbus & Kevin Reffett & Łukasz Woźny, 2015. "Time consistent Markov policies in dynamic economies with quasi-hyperbolic consumers," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(1), pages 83-112, February.
    6. Massimo Marinacci & Luigi Montrucchio, 2017. "Unique Tarski Fixed Points," Working Papers 604, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    7. Cuong Le Van & Lisa Morhaim & Yiannis Vailakis, 2008. "Monotone Concave Operators: An application to the existence and uniqueness of solutions to the Bellman equation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00294828, HAL.
    8. Robert Becker & Juan Pablo Rincon-Zapatero, 2018. "Recursive Utility and Thompson Aggregators, I: Constructive Existence Theory for the Koopmans Equation," CAEPR Working Papers 2018-006, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    9. Coleman, Wilbur John, II, 1991. "Equilibrium in a Production Economy with an Income Tax," Econometrica, Econometric Society, vol. 59(4), pages 1091-1104, July.
    10. Marinacci, Massimo & Montrucchio, Luigi, 2010. "Unique solutions for stochastic recursive utilities," Journal of Economic Theory, Elsevier, vol. 145(5), pages 1776-1804, September.
    11. V. Filipe Martins-da-Rocha & Yiannis Vailakis, 2010. "Existence and Uniqueness of a Fixed Point for Local Contractions," Econometrica, Econometric Society, vol. 78(3), pages 1127-1141, May.
    12. Cuong Le Van & Lisa Morhaim & Yiannis Vailakis, 2008. "Monotone Concave Operators: An application to the existence and uniqueness of solutions to the Bellman equation," Working Papers hal-00294828, HAL.
    13. Rose-Anne Dana & Cuong Le Van & Tapan Mitra & Kazuo Nishimura (ed.), 2006. "Handbook on Optimal Growth 1," Springer Books, Springer, number 978-3-540-32310-5, June.
    14. Boud, John III, 1990. "Recursive utility and the Ramsey problem," Journal of Economic Theory, Elsevier, vol. 50(2), pages 326-345, April.
    15. Cuong Le Van & Yiannis Vailakis, 2005. "Recursive utility and optimal growth with bounded or unbounded returns," Post-Print halshs-00101201, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stachurski, John & Wilms, Ole & Zhang, Junnan, 2024. "Asset pricing with time preference shocks: Existence and uniqueness," Journal of Economic Theory, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Becker & Juan Pablo Rincon-Zapatero, 2018. "Recursive Utility and Thompson Aggregators, I: Constructive Existence Theory for the Koopmans Equation," CAEPR Working Papers 2018-006, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    2. Robert A. Becker & Juan Pablo Rincón-Zapatero, 2017. "Arbitration and Renegotiation in Trade Agreements," CAEPR Working Papers 2017-007, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    3. Becker, Robert A. & Rincón-Zapatero, Juan Pablo, 2021. "Thompson aggregators, Scott continuous Koopmans operators, and Least Fixed Point theory," Mathematical Social Sciences, Elsevier, vol. 112(C), pages 84-97.
    4. Guanlong Ren & John Stachurski, 2018. "Dynamic Programming with Recursive Preferences: Optimality and Applications," Papers 1812.05748, arXiv.org, revised Jun 2020.
    5. Jaroslav Borovička & John Stachurski, 2020. "Necessary and Sufficient Conditions for Existence and Uniqueness of Recursive Utilities," Journal of Finance, American Finance Association, vol. 75(3), pages 1457-1493, June.
    6. Bloise, Gaetano & Vailakis, Yiannis, 2018. "Convex dynamic programming with (bounded) recursive utility," Journal of Economic Theory, Elsevier, vol. 173(C), pages 118-141.
    7. Bloise, G. & Van, C. Le & Vailakis, Y., 2024. "An approximation approach to dynamic programming with unbounded returns," Journal of Mathematical Economics, Elsevier, vol. 111(C).
    8. Massimo Marinacci & Luigi Montrucchio, 2017. "Unique Tarski Fixed Points," Working Papers 604, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    9. Anna Jaśkiewicz & Janusz Matkowski & Andrzej Nowak, 2014. "On variable discounting in dynamic programming: applications to resource extraction and other economic models," Annals of Operations Research, Springer, vol. 220(1), pages 263-278, September.
    10. Philippe Bich & Jean-Pierre Drugeon & Lisa Morhaim, 2018. "On temporal aggregators and dynamic programming," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(3), pages 787-817, October.
    11. Massimo Marinacci & Luigi Montrucchio, 2019. "Unique Tarski Fixed Points," Management Science, INFORMS, vol. 44(4), pages 1174-1191, November.
    12. Philippe Bich & Jean-Pierre Drugeon & Lisa Morhaim, 2018. "On Temporal Aggregators and Dynamic Programming," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01437496, HAL.
    13. Łukasz Balbus, 2020. "On recursive utilities with non-affine aggregator and conditional certainty equivalent," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(2), pages 551-577, September.
    14. Philippe Bich & Jean-Pierre Drugeon & Lisa Morhaim, 2015. "On Aggregators and Dynamic Programming," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01169552, HAL.
    15. Janusz Matkowski & Andrzej Nowak, 2011. "On discounted dynamic programming with unbounded returns," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 46(3), pages 455-474, April.
    16. Balbus, Łukasz & Reffett, Kevin & Woźny, Łukasz, 2022. "Time-consistent equilibria in dynamic models with recursive payoffs and behavioral discounting," Journal of Economic Theory, Elsevier, vol. 204(C).
    17. Christensen, Timothy M., 2022. "Existence and uniqueness of recursive utilities without boundedness," Journal of Economic Theory, Elsevier, vol. 200(C).
    18. Paweł Dziewulski, 2011. "On Time-to-Build Economies with Multiple-Stage Investments," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 9, pages 23-49.
    19. Thomas J. Sargent & John Stachurski, 2024. "Dynamic Programming: Finite States," Papers 2401.10473, arXiv.org.
    20. Philippe Bich & Jean-Pierre Drugeon & Lisa Morhaim, 2015. "On Aggregators and Dynamic Programming," Documents de travail du Centre d'Economie de la Sorbonne 15053, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.

    More about this item

    Keywords

    Recursive Utility; Thompson Aggregators; Koopmans Equation; u0 – Concave Operator Theory;
    All these keywords.

    JEL classification:

    • D10 - Microeconomics - - Household Behavior - - - General
    • D15 - Microeconomics - - Household Behavior - - - Intertemporal Household Choice; Life Cycle Models and Saving
    • D50 - Microeconomics - - General Equilibrium and Disequilibrium - - - General
    • E21 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Consumption; Saving; Wealth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inu:caeprp:2018008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Center for Applied Economics and Policy Research (email available below). General contact details of provider: https://edirc.repec.org/data/caeprus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.