IDEAS home Printed from https://ideas.repec.org/p/inu/caeprp/2009003.html
   My bibliography  Save this paper

Persistence In Nonlinear Time Series: A Nonparametric Approach

Author

Listed:
  • Juan Carlos Escanciano

    (Indiana University Bloomington)

  • Javier Hualde

    (Universidad de Navarra)

Abstract

The purpose of the present paper is to relate two important concepts of time series analysis, namely, nonlinearity and persistence. Traditional measures of persistence are based on correlations or periodograms, which may be inappropriate under nonlinearity and/or non-Gaussianity. This article proves that nonlinear persistence can be characterized by cumulative measures of dependence. The new cumulative measures are nonparametric, simple to estimate and do not require the use of any smoothing user-chosen parameters. In addition, we propose nonparametric estimates of our measures and establish their limiting properties. Finally, we employ our measures to analyze the nonlinear persistence properties of some international stock market indices, where we find an ubiquitous nonlinear persistence in conditional variance that is not accounted for by popular parametric models or by classical linear measures of persistence. This finding has important economic implications in, e.g., asset pricing and hedging. Conditional variance persistence in bull and bear markets is also analyzed and compared.

Suggested Citation

  • Juan Carlos Escanciano & Javier Hualde, 2009. "Persistence In Nonlinear Time Series: A Nonparametric Approach," CAEPR Working Papers 2009-003, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
  • Handle: RePEc:inu:caeprp:2009003
    as

    Download full text from publisher

    File URL: https://caepr.indiana.edu/RePEc/inu/caeprp/caepr2009-003.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Herman J. Bierens & Werner Ploberger, 1997. "Asymptotic Theory of Integrated Conditional Moment Tests," Econometrica, Econometric Society, vol. 65(5), pages 1129-1152, September.
    2. Bollerslev, Tim & Engle, Robert F, 1993. "Common Persistence in Conditional Variances," Econometrica, Econometric Society, vol. 61(1), pages 167-186, January.
    3. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    4. repec:bla:jfinan:v:59:y:2004:i:4:p:1481-1509 is not listed on IDEAS
    5. Nze, Patrick Ango & Doukhan, Paul, 2004. "Weak Dependence: Models And Applications To Econometrics," Econometric Theory, Cambridge University Press, vol. 20(6), pages 995-1045, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliver Linton & Yoon Jae Whang & Yu-Min Yen, 2021. "The lower regression function and testing expectation dependence dominance hypotheses," Econometric Reviews, Taylor & Francis Journals, vol. 40(8), pages 709-727, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Carlos Escanciano & Javier Hualde, 2021. "Measuring Asset Market Linkages: Nonlinear Dependence and Tail Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 453-465, March.
    2. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    3. Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2009. "Asymmetric multivariate normal mixture GARCH," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2129-2154, April.
    4. Vozlyublennaia, Nadia & Meshcheryakov, Artem, 2014. "Dynamic correlation structure and security risk," Journal of Economics and Business, Elsevier, vol. 73(C), pages 48-64.
    5. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    6. Nathan Lael Joseph & Thi Thuy Anh Vo & Asma Mobarek & Sabur Mollah, 2020. "Volatility and asymmetric dependence in Central and East European stock markets," Review of Quantitative Finance and Accounting, Springer, vol. 55(4), pages 1241-1303, November.
    7. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    8. Tian, Maoxi & El Khoury, Rim & Alshater, Muneer M., 2023. "The nonlinear and negative tail dependence and risk spillovers between foreign exchange and stock markets in emerging economies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    9. Andrew Patton, 2002. "(IAM Series No 001) On the Out-Of-Sample Importance of Skewness and Asymetric Dependence for Asset Allocation," FMG Discussion Papers dp431, Financial Markets Group.
    10. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    11. Rand Kwong Yew Low, 2018. "Vine copulas: modelling systemic risk and enhancing higher‐moment portfolio optimisation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 423-463, November.
    12. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    13. Li, Xiao-Ming & Rose, Lawrence C., 2009. "The tail risk of emerging stock markets," Emerging Markets Review, Elsevier, vol. 10(4), pages 242-256, December.
    14. Klaus Duellmann & Martin Erdelmeier, 2009. "Crash Testing German Banks," International Journal of Central Banking, International Journal of Central Banking, vol. 5(3), pages 139-175, September.
    15. Małgorzata Doman & Ryszard Doman, 2013. "Dynamic linkages between stock markets: the effects of crises and globalization," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(2), pages 87-112, August.
    16. Dante Amengual & Marine Carrasco & Enrique Sentana, 2017. "Testing Distributional Assumptions Using a Continuum of Moments," Working Papers wp2018_1709, CEMFI.
    17. Nishiyama, Yoshihiko & Hitomi, Kohtaro & Kawasaki, Yoshinori & Jeong, Kiho, 2011. "A consistent nonparametric test for nonlinear causality—Specification in time series regression," Journal of Econometrics, Elsevier, vol. 165(1), pages 112-127.
    18. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    19. Arısoy, Yakup Eser & Altay-Salih, Aslıhan & Akdeniz, Levent, 2015. "Aggregate volatility expectations and threshold CAPM," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 231-253.
    20. Marcel Wollschlager & Rudi Schafer, 2015. "Impact of non-stationarity on estimating and modeling empirical copulas of daily stock returns," Papers 1506.08054, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inu:caeprp:2009003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Center for Applied Economics and Policy Research (email available below). General contact details of provider: https://edirc.repec.org/data/caeprus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.