IDEAS home Printed from https://ideas.repec.org/p/imf/imfwpa/2022-226.html
   My bibliography  Save this paper

Modeling and Forecasting Monthly Tourism Arrivals to Aruba Since COVID-19 Pandemic

Author

Abstract

This paper improves short-term forecasting models of monthly tourism arrivals by estimating and evaluating a time-series model with exogenous regressors (ARIMA-X) using a case of Aruba, a small open tourism-dependent economy. Given importance of the US market for Aruba, it investigates informational value of Google Searches originating in the USA, flight capacity utilization on the US air-carriers, and per capita demand of the US consumers, given the volatility index in stock markets (VIX). It yields several insights. First, flight capacity is the best variable to account for the travel restrictions during the pandemic. Second, US real personal consumption expenditure becomes a more significnat predictor than income as the former better captured impact of the COVID-19 restrictions on the consumers’ behavior, while income boosted by the pandemic fiscal support was not fully directed to spending. Third, intercept correction improves the model in the estimation period. Finally, the pandemic changed econometric relationships between the tourism arrivals and their main determinants, and accuracy of the forecast models. Going forward, the analysts should re-estimate the models. Out-of-sample forecasts with 5 percent confidence intervals are produced for 18 months ahead.

Suggested Citation

  • Olga Bespalova, 2022. "Modeling and Forecasting Monthly Tourism Arrivals to Aruba Since COVID-19 Pandemic," IMF Working Papers 2022/226, International Monetary Fund.
  • Handle: RePEc:imf:imfwpa:2022/226
    as

    Download full text from publisher

    File URL: http://www.imf.org/external/pubs/cat/longres.aspx?sk=525638
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imf:imfwpa:2022/226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Akshay Modi (email available below). General contact details of provider: https://edirc.repec.org/data/imfffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.