IDEAS home Printed from https://ideas.repec.org/p/iim/iimawp/wp01430.html
   My bibliography  Save this paper

An Elementary Proof in Rational Choice Theory Revisited

Author

Listed:
  • Lahiri Somdeb

Abstract

In this paper we prove a result which, apart from having independent interest, has found applications in recent mathematical economic literature of rational choice theory. The result states that if a two-dimensional demand function satisfies budget exhaustion, the Weak Axiom of Revealed Preference and its range contains the strictly positive orthant of two dimensional Euclidean space, then it is representable by an utility function which is upper semicontinuous on the non-negative orthant of two dimensional Euclidean space and strictly quasi-concave and strictly monotonically increasing on the strictly positive orthant of two dimensional Euclidean space. By strictly monotonically increasing on the strictly positive orthant of two dimensional Euclidean space we mean that if a strictly positive vector is semi-strictly greater than another vector in the non-negative orthant of two dimensional Euclidean space, then the former has greater utility than the latter.

Suggested Citation

  • Lahiri Somdeb, 1997. "An Elementary Proof in Rational Choice Theory Revisited," IIMA Working Papers WP1997-02-01_01430, Indian Institute of Management Ahmedabad, Research and Publication Department.
  • Handle: RePEc:iim:iimawp:wp01430
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iim:iimawp:wp01430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/eciimin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.