IDEAS home Printed from https://ideas.repec.org/p/ihs/ihswps/52.html
   My bibliography  Save this paper

Cointegrated portfolios and volatility modeling in the cryptocurrency market

Author

Listed:
  • Gabriel, Stefan

    (University of Vienna, Department of Finance, Vienna, Austria)

  • Kunst, Robert M.

    (Institute for Advanced Studies and University of Vienna, Vienna, Austria)

Abstract

We examine two major topics in the field of cryptocurrencies. On the one hand, we investigate possible long-run equilibrium relationships among ten major cryptocurrencies by applying two different cointegration tests. This analysis aims at constructing cointegrated portfolios that enable statistical arbitrage. Moreover, we find evidence for a connection between market volatility and the spread used for trading. The results of the trading strategies suggest that cointegrated portfolios based on the Johansen procedure generate the highest abnormal log-returns, both in-sample and out-of-sample. Five out of six trading strategies generate a positive overall profit and outperform a passive investment approach out-of-sample. The second part of the econometric analysis explores Granger causality between volatility and the spread. For this analysis, we implement two types of forecasting models for Bitcoin volatility: the GARCH (generalized autoregressive conditional heteroskedasticity) family using daily price data and the HAR (Heterogeneous AutoRegressive) model family based on 5-min high-frequency data. In both categories, we also consider potential jumps in the price series, as we found that price jumps play an important role in Bitcoin volatility forecasts. The findings indicate that the realized GARCH model is the only GARCH model that can compete against the HAR-RV (Heterogeneous Autoregressive Realized Volatility) model in out-of-sample forecasting.

Suggested Citation

  • Gabriel, Stefan & Kunst, Robert M., 2024. "Cointegrated portfolios and volatility modeling in the cryptocurrency market," IHS Working Paper Series 52, Institute for Advanced Studies.
  • Handle: RePEc:ihs:ihswps:52
    as

    Download full text from publisher

    File URL: https://irihs.ihs.ac.at/id/eprint/6927/
    File Function: First version, 2024
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    cryptocurrencies; bitcoin volatility; realized variance; jump variation; cointegrated portfolios; statistical arbitrage;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ihs:ihswps:52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Doris Szoncsitz (email available below). General contact details of provider: https://edirc.repec.org/data/deihsat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.