IDEAS home Printed from https://ideas.repec.org/p/ias/cpaper/03-wp337.html
   My bibliography  Save this paper

Impacts of Climate Change on Stream Flow in the Upper Mississippi River Basin: A Regional Climate Model Perspective, The

Author

Listed:
  • Manoj Jha
  • Zaitao Pan
  • Eugene S. Takle
  • Roy Gu

Abstract

We evaluate the impact of climate change on stream flow in the Upper Mississippi River Basin (UMRB) by using a regional climate model (RCM) coupled with a hydrologic model, the Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated and validated against measured stream flow data using observed weather data and inputs from the Environmental Protection Agency's BASINS (Better Assessment Science Integrating Point and Nonpoint Sources) geographical information/database system. The combined performance of the SWAT and RCM was examined using observed weather data as a lateral boundary condition in the RCM. The SWAT and RCM were found to perform well, especially on an annual basis. The potential impacts of climate change on water yield and other hydrologic budget components were then quantified by driving SWAT with current and future climates. A 21 percent increase in future precipitation simulated by the RCM produced an 18 percent increase in snowfall, a 51 percent increase in surface runoff, and a 43 percent increase in groundwater recharge, resulting in a 50 percent net increase in total water yield in the UMRB on an annual basis. Uncertainty analysis showed that the simulated change in stream flow substantially exceeded model biases of the combined modeling system (with the largest bias being 18 percent), giving us relatively high confidence in the results.

Suggested Citation

  • Manoj Jha & Zaitao Pan & Eugene S. Takle & Roy Gu, 2003. "Impacts of Climate Change on Stream Flow in the Upper Mississippi River Basin: A Regional Climate Model Perspective, The," Center for Agricultural and Rural Development (CARD) Publications 03-wp337, Center for Agricultural and Rural Development (CARD) at Iowa State University.
  • Handle: RePEc:ias:cpaper:03-wp337
    as

    Download full text from publisher

    File URL: https://www.card.iastate.edu/products/publications/pdf/03wp337.pdf
    File Function: Full Text
    Download Restriction: no

    File URL: https://www.card.iastate.edu/products/publications/synopsis/?p=486
    File Function: Online Synopsis
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soojun Kim & Jaewon Kwak & Hui Noh & Hung Kim, 2014. "Evaluation of drought and flood risks in a multipurpose dam under climate change: a case study of Chungju Dam in Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1663-1678, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ias:cpaper:03-wp337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/caiasus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.