IDEAS home Printed from https://ideas.repec.org/p/huj/dispap/dp599.html
   My bibliography  Save this paper

The Noisy Secretary Problem and Some Results on Extreme Concomitant Variables

Author

Listed:
  • Abba M. Krieger
  • Ester Samuel-Cahn

Abstract

The classical secretary problem for selecting the best item is studied when the actual values of the items are observed with noise. One of the main appeals of the secretary problem is that the optimal strategy is able to find the best observation with the nontrivial probability of about 0.37, even when the number of observations is arbitrarily large. The results are strikingly different when the quality of the secretaries are observed with noise. If there is no noise, then the only information that is needed is whether an observation is the best among those already observed. Since observations are assumed to be i.i.d. this is distribution free. In the case of noisy data, the results are no longer distrubtion free. Furthermore, one needs to know the rank of the noisy observation among those already seen. Finally, the probability of finding the best secretary often goes to 0 as the number of obsevations, n, goes to infinity. The results depend heavily on the behavior of pn, the probability that the observation that is best among the noisy observations is also best among the noiseless observations. Results involving optimal strategies if all that is available is noisy data are described and examples are given to elucidate the results.

Suggested Citation

  • Abba M. Krieger & Ester Samuel-Cahn, 2012. "The Noisy Secretary Problem and Some Results on Extreme Concomitant Variables," Discussion Paper Series dp599, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
  • Handle: RePEc:huj:dispap:dp599
    as

    Download full text from publisher

    File URL: http://ratio.huji.ac.il/sites/default/files/publications/dp599_0.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Skarupski, 2020. "Secretary Problem with Possible Errors in Observation," Mathematics, MDPI, vol. 8(10), pages 1-10, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:huj:dispap:dp599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael Simkin (email available below). General contact details of provider: https://edirc.repec.org/data/crihuil.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.