IDEAS home Printed from https://ideas.repec.org/p/hst/ghsdps/gd09-092.html
   My bibliography  Save this paper

Nonparametric regression for dependent data in the errors-in-variables problem

Author

Listed:
  • Toshio Honda

Abstract

We consider the nonparametric estimation of the regression functions for dependent data. Suppose that the covariates are observed with additive errors in the data and we employ nonparametric deconvolution kernel techniques to estimate the regression functions in this paper. We investigate how the strength of time dependence affects the asymptotic properties of the local constant and linear estimators. We treat both short-range dependent and long-range dependent linear processes in a unified way and demonstrate that the long-range dependence (LRD) of the covariates affects the asymptotic properties of the nonparametric estimators as well as the LRD of regression errors does.

Suggested Citation

  • Toshio Honda, 2009. "Nonparametric regression for dependent data in the errors-in-variables problem," Global COE Hi-Stat Discussion Paper Series gd09-092, Institute of Economic Research, Hitotsubashi University.
  • Handle: RePEc:hst:ghsdps:gd09-092
    as

    Download full text from publisher

    File URL: http://gcoe.ier.hit-u.ac.jp/research/discussion/2008/pdf/gd09-092.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harry Zanten & Pawel Zareba, 2008. "A note on wavelet density deconvolution for weakly dependent data," Statistical Inference for Stochastic Processes, Springer, vol. 11(2), pages 207-219, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igor S. Borisov & Yuliana Yu. Linke & Pavel S. Ruzankin, 2021. "Universal weighted kernel-type estimators for some class of regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 141-166, February.
    2. Mynbaev, Kairat & Martins-Filho, Carlos, 2015. "Consistency and asymptotic normality for a nonparametric prediction under measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 166-188.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van Es, Bert & Spreij, Peter, 2011. "Estimation of a multivariate stochastic volatility density by kernel deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 683-697, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hst:ghsdps:gd09-092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tatsuji Makino (email available below). General contact details of provider: https://edirc.repec.org/data/iehitjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.