IDEAS home Printed from https://ideas.repec.org/p/hrv/hksfac/37140312.html
   My bibliography  Save this paper

Using arborescences to estimate hierarchicalness in directed complex networks

Author

Listed:
  • Coscia, Michele

Abstract

Complex networks are a useful tool for the understanding of complex systems. One of the emerging properties of such systems is their tendency to form hierarchies: networks can be organized in levels, with nodes in each level exerting control on the ones beneath them. In this paper, we focus on the problem of estimating how hierarchical a directed network is. We propose a structural argument: a network has a strong top-down organization if we need to delete only few edges to reduce it to a perfect hierarchy—an arborescence. In an arborescence, all edges point away from the root and there are no horizontal connections, both characteristics we desire in our idealization of what a perfect hierarchy requires. We test our arborescence score in synthetic and real-world directed networks against the current state of the art in hierarchy detection: agony, flow hierarchy and global reaching centrality. These tests highlight that our arborescence score is intuitive and we can visualize it; it is able to better distinguish between networks with and without a hierarchical structure; it agrees the most with the literature about the hierarchy of well-studied complex systems; and it is not just a score, but it provides an overall scheme of the underlying hierarchy of any directed complex network.

Suggested Citation

  • Coscia, Michele, 2018. "Using arborescences to estimate hierarchicalness in directed complex networks," Scholarly Articles 37140312, Harvard Kennedy School of Government.
  • Handle: RePEc:hrv:hksfac:37140312
    as

    Download full text from publisher

    File URL: http://dash.harvard.edu/bitstream/handle/1/37140312/hierarchicalness-notrackchng.pdf
    Download Restriction: no

    File URL: http://dash.harvard.edu/bitstream/handle/1/37140312/hierarchicalness-notrackchng.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasiliauskaite, Vaiva & Evans, Tim S. & Expert, Paul, 2022. "Cycle analysis of Directed Acyclic Graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hrv:hksfac:37140312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Office for Scholarly Communication (email available below). General contact details of provider: https://edirc.repec.org/data/ksharus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.