IDEAS home Printed from https://ideas.repec.org/p/hit/cinwps/27.html
   My bibliography  Save this paper

The Structure and Evolution of Buyer-Supplier Networks

Author

Listed:
  • Mizuno, Takayuki
  • Souma, Wataru
  • Watanabe, Tsutomu

Abstract

In this paper, we investigate the structure and evolution of customer-supplier networks in Japan using a unique dataset that contains information on customer and supplier linkages for more than 500,000 incorporated non-financial firms for the five years from 2008 to 2012. We find, first, that the number of customer links is unequal across firms; the customer link distribution has a power-law tail with an exponent of unity (i.e., it follows Zipf’s law). We interpret this as implying that competition among firms to acquire new customers yields winners with a large number of customers, as well as losers with fewer customers. We also show that the shortest path length for any pair of firms is, on average, 4.3 links. Second, we find that link switching is relatively rare. Our estimates indicate that the survival rate per year for customer links is 92 percent and for supplier links 93 percent. Third and finally, we find that firm growth rates tend to be more highly correlated the closer two firms are to each other in a customer-supplier network (i.e., the smaller is the shortest path length for the two firms). This suggests that a non-negligible portion of fluctuations in firm growth stems from the propagation of microeconomic shocks - shocks affecting only a particular firm - through customer-supplier chains.

Suggested Citation

  • Mizuno, Takayuki & Souma, Wataru & Watanabe, Tsutomu, 2014. "The Structure and Evolution of Buyer-Supplier Networks," Working Paper Series 27, Center for Interfirm Network, Institute of Economic Research, Hitotsubashi University.
  • Handle: RePEc:hit:cinwps:27
    as

    Download full text from publisher

    File URL: https://hermes-ir.lib.hit-u.ac.jp/hermes/ir/re/26137/ifn_wp027.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vasco Carvalho, 2007. "Aggregate fluctuations and the network structure of intersectoral trade," Economics Working Papers 1206, Department of Economics and Business, Universitat Pompeu Fabra, revised Oct 2010.
    2. Andrew T. Foerster & Pierre-Daniel G. Sarte & Mark W. Watson, 2011. "Sectoral versus Aggregate Shocks: A Structural Factor Analysis of Industrial Production," Journal of Political Economy, University of Chicago Press, vol. 119(1), pages 1-38.
    3. Thomas Chaney, 2008. "Distorted Gravity: The Intensive and Extensive Margins of International Trade," American Economic Review, American Economic Association, vol. 98(4), pages 1707-1721, September.
    4. Massimo Riccaboni & Stefano Schiavo, 2009. "The Structure and Growth of Weighted Networks," Papers 0908.0348, arXiv.org, revised Dec 2009.
    5. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Systemic Risk and Stability in Financial Networks," American Economic Review, American Economic Association, vol. 105(2), pages 564-608, February.
    6. Daron Acemoglu & Vasco M. Carvalho & Asuman Ozdaglar & Alireza Tahbaz‐Salehi, 2012. "The Network Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 80(5), pages 1977-2016, September.
    7. Bernard Herskovic & Bryan Kelly & Hanno Lustig & Stijn Van Nieuwerburgh, 2020. "Firm Volatility in Granular Networks," Journal of Political Economy, University of Chicago Press, vol. 128(11), pages 4097-4162.
    8. Garlaschelli, Diego & Battiston, Stefano & Castri, Maurizio & Servedio, Vito D.P. & Caldarelli, Guido, 2005. "The scale-free topology of market investments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 491-499.
    9. Julian di Giovanni & Andrei A. Levchenko, 2010. "Putting the Parts Together: Trade, Vertical Linkages, and Business Cycle Comovement," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(2), pages 95-124, April.
    10. François Gourio & Leena Rudanko, 2014. "Customer Capital," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(3), pages 1102-1136.
    11. Stella, Andrea, 2015. "Firm dynamics and the origins of aggregate fluctuations," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 71-88.
    12. Saito, Yukiko Umeno & Watanabe, Tsutomu & Iwamura, Mitsuru, 2007. "Do larger firms have more interfirm relationships?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 158-163.
    13. Watanabe, Hayafumi & Takayasu, Hideki & Takayasu, Misako, 2013. "Relations between allometric scalings and fluctuations in complex systems: The case of Japanese firms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 741-756.
    14. Y. Fujiwara & H. Aoyama, 2010. "Large-scale structure of a nation-wide production network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 77(4), pages 565-580, October.
    15. repec:hal:spmain:info:hdl:2441/6apm7lruv088iagm4rv2c33jtg is not listed on IDEAS
    16. Garlaschelli, Diego & Loffredo, Maria I., 2005. "Structure and evolution of the world trade network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 138-144.
    17. D. Garlaschelli & M. I. Loffredo, 2004. "Fitness-dependent topological properties of the World Trade Web," Papers cond-mat/0403051, arXiv.org, revised Oct 2004.
    18. Battiston, Stefano & Delli Gatti, Domenico & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2007. "Credit chains and bankruptcy propagation in production networks," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 2061-2084, June.
    19. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2013. "The Network Origins of Large Economic Downturns," NBER Working Papers 19230, National Bureau of Economic Research, Inc.
    20. D. Garlaschelli & M. I. Loffredo, 2005. "Structure and Evolution of the World Trade Network," Papers physics/0502066, arXiv.org, revised May 2005.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hernández, Juan M. & González-Martel, Christian, 2017. "An evolving model for the lodging-service network in a tourism destination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 296-307.
    2. Leonidov, Andrey & Serebryannikova, Ekaterina, 2019. "Dynamical topology of highly aggregated input–output networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 234-252.
    3. Hazem Krichene & Abhijit Chakraborty & Hiroyasu Inoue & Yoshi Fujiwara, 2017. "Business cycles’ correlation and systemic risk of the Japanese supplier-customer network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-22, October.
    4. Atushi Ishikawa & Shouji Fujimoto & Takayuki Mizuno & Tsutomu Watanabe, 2016. "Long-term firm growth properties derived from short-term laws of sales and number of employees in Japan and France," Evolutionary and Institutional Economics Review, Springer, vol. 13(2), pages 409-422, December.
    5. Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2015. "Structure of global buyer-supplier networks and its implications for conflict minerals regulations," Papers 1505.02274, arXiv.org.
    6. David C. Earnest & Ian F. Wilkinson, 2018. "An agent based model of the evolution of supplier networks," Computational and Mathematical Organization Theory, Springer, vol. 24(1), pages 112-144, March.
    7. Hirokazu Kawamoto & Hideki Takayasu & Henrik Jeldtoft Jensen & Misako Takayasu, 2015. "Precise Calculation of a Bond Percolation Transition and Survival Rates of Nodes in a Complex Network," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-16, April.
    8. Mundt, Philipp, 2021. "The formation of input–output architecture: Evidence from the European Union," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 89-104.
    9. Chakraborty, Abhijit & Krichene, Hazem & Inoue, Hiroyasu & Fujiwara, Yoshi, 2019. "Characterization of the community structure in a large-scale production network in Japan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 210-221.
    10. Mungo, Luca & Lafond, François & Astudillo-Estévez, Pablo & Farmer, J. Doyne, 2023. "Reconstructing production networks using machine learning," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    11. Mary Han & Bill McKelvey, 2016. "How to Grow Successful Social Entrepreneurship Firms? Key Ideas from Complexity Theory," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 24(03), pages 243-280, September.
    12. Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2015. "Structure of global buyer-supplier networks and its implications for conflict minerals regulations," UTokyo Price Project Working Paper Series 053, University of Tokyo, Graduate School of Economics.
    13. Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2015. "Structure of global buyer-supplier networks and its implications for conflict minerals regulations," CARF F-Series CARF-F-362, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    14. Vipin P. Veetil & Lawrence H. White, 2017. "Towards a New Austrian Macroeconomics," The Review of Austrian Economics, Springer;Society for the Development of Austrian Economics, vol. 30(1), pages 19-38, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MIZUNO Takayuki & SOUMA Wataru & WATANABE Tsutomu, 2015. "Buyer-Supplier Networks and Aggregate Volatility," Discussion papers 15056, Research Institute of Economy, Trade and Industry (RIETI).
    2. Takayuki Mizuno & Wataru Souma & Tsutomu Watanabe, 2014. "The Structure and Evolution of Buyer-Supplier Networks," CARF F-Series CARF-F-339, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. Atushi Ishikawa & Shouji Fujimoto & Takayuki Mizuno & Tsutomu Watanabe, 2014. "Analytical Derivation of Power Laws in Firm Size Variables from Gibrat’s Law and Quasi-inversion Symmetry: A Geomorphological Approach," UTokyo Price Project Working Paper Series 019, University of Tokyo, Graduate School of Economics.
    4. Takayuki Mizuno & Wataru Souma & Tsutomu Watanabe, 2014. "Buyer-Supplier Networks and Aggregate Volatility," CARF F-Series CARF-F-353, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    5. Takayuki Mizuno & Wataru Souma & Tsutomu Watanabe, 2014. "Buyer-Supplier Networks and Aggregate Volatility," UTokyo Price Project Working Paper Series 033, University of Tokyo, Graduate School of Economics.
    6. Takayuki Mizuno & Wataru Souma & Tsutomu Watanabe, 2014. "The Structure and Evolution of Buyer-Supplier Networks," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    7. João Amador & Sónia Cabral, 2017. "Networks of Value-added Trade," The World Economy, Wiley Blackwell, vol. 40(7), pages 1291-1313, July.
    8. David Rezza Baqaee & Emmanuel Farhi, 2019. "The Macroeconomic Impact of Microeconomic Shocks: Beyond Hulten's Theorem," Econometrica, Econometric Society, vol. 87(4), pages 1155-1203, July.
    9. Massimo Riccaboni & Stefano Schiavo, 2009. "The Structure and Growth of International Trade," Documents de Travail de l'OFCE 2009-24, Observatoire Francais des Conjonctures Economiques (OFCE).
    10. Bernard Herskovic & Bryan Kelly & Hanno Lustig & Stijn Van Nieuwerburgh, 2020. "Firm Volatility in Granular Networks," Journal of Political Economy, University of Chicago Press, vol. 128(11), pages 4097-4162.
    11. Massimo Riccaboni & Stefano Schiavo, 2009. "The Structure and Growth of Weighted Networks," Papers 0908.0348, arXiv.org, revised Dec 2009.
    12. Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2015. "Structure of global buyer-supplier networks and its implications for conflict minerals regulations," Papers 1505.02274, arXiv.org.
    13. Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2015. "Structure of global buyer-supplier networks and its implications for conflict minerals regulations," CARF F-Series CARF-F-362, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    14. Julian di Giovanni & Andrei A. Levchenko & Isabelle Mejean, 2024. "Foreign Shocks as Granular Fluctuations," Journal of Political Economy, University of Chicago Press, vol. 132(2), pages 391-433.
    15. Mungo, Luca & Lafond, François & Astudillo-Estévez, Pablo & Farmer, J. Doyne, 2023. "Reconstructing production networks using machine learning," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    16. Michael Olabisi, 2020. "Input–Output Linkages and Sectoral Volatility," Economica, London School of Economics and Political Science, vol. 87(347), pages 713-746, July.
    17. Tiziano Squartini & Guido Caldarelli & Giulio Cimini & Andrea Gabrielli & Diego Garlaschelli, 2018. "Reconstruction methods for networks: the case of economic and financial systems," Papers 1806.06941, arXiv.org.
    18. Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2015. "Structure of global buyer-supplier networks and its implications for conflict minerals regulations," UTokyo Price Project Working Paper Series 053, University of Tokyo, Graduate School of Economics.
    19. Barauskaite, Kristina & Nguyen, Anh D.M., 2021. "Global intersectoral production network and aggregate fluctuations," Economic Modelling, Elsevier, vol. 102(C).
    20. Marco Dueñas & Giorgio Fagiolo, 2013. "Modeling the International-Trade Network: a gravity approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 155-178, April.

    More about this item

    Keywords

    buyer-supplier networks; supply chains; input-output analysis; power-law distributions; firm dynamics;
    All these keywords.

    JEL classification:

    • L11 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Production, Pricing, and Market Structure; Size Distribution of Firms
    • L14 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Transactional Relationships; Contracts and Reputation
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hit:cinwps:27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Digital Resources Section, Hitotsubashi University Library (email available below). General contact details of provider: https://edirc.repec.org/data/cnhitjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.